Skip to main content
Chemistry LibreTexts

1.12.18: Expansions- Solutions- Isentropic Dependence of Apparent Molar Volume of Solute on Temperature and Pressure

  • Page ID
    377815
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The starting point is the following calculus operation.

    \[\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{T}}\right)_{\mathrm{s}}=\left(\frac{\partial \mathrm{p}}{\partial \mathrm{T}}\right)_{\mathrm{s}} \,\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{p}}\right)_{\mathrm{s}}\]

    Also

    \[\left(\frac{\partial \phi\left(V_{\mathrm{j}}\right)}{\partial T}\right)_{\mathrm{s}}=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{T}} \,\left(\frac{\partial \mathrm{T}}{\partial \mathrm{V}}\right)_{\mathrm{p}} \,\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{p}}\right)_{\mathrm{s}}\]

    Or,

    \[\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{T}}\right)_{\mathrm{s}}=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{T}} \, \frac{\mathrm{V}}{\mathrm{V}} \,\left(\frac{\partial \mathrm{T}}{\partial \mathrm{V}}\right)_{\mathrm{p}} \,\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{p}}\right)_{\mathrm{s}}\]

    Hence,

    \[\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial T}\right)_{\mathrm{s}}=\frac{\sigma}{\mathrm{T} \, \alpha_{\mathrm{p}}} \,\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{p}}\right)_{\mathrm{s}}\]

    But \(\frac{\sigma}{\mathrm{T}}=\frac{\left[\alpha_{p}\right]^{2}}{\delta}\) Then

    \[\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{T}}\right)_{\mathrm{s}}=\frac{\alpha_{\mathrm{p}}}{\delta} \,\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{p}}\right)_{\mathrm{s}}\]

    Also,

    \[\alpha_{\mathrm{s}}=-\kappa_{\mathrm{s}} \, \sigma / \mathrm{T} \, \alpha_{\mathrm{p}}\]

    Then \(\frac{\alpha_{\mathrm{s}}}{\kappa_{\mathrm{s}}}=-\frac{\alpha_{\mathrm{p}}}{\delta}\) Hence

    \[\frac{\left[\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right) / \partial \mathrm{T}\right]_{\mathrm{s}}}{\alpha_{\mathrm{s}}}=-\frac{\left[\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right) / \partial \mathrm{p}\right]_{\mathrm{s}}}{\kappa_{\mathrm{s}}}\]