Skip to main content
Chemistry LibreTexts

1.12.21: Expansions- Solutions- Partial Molar Isobaric and Isentropic

  • Page ID
    377818
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The starting point is equation (a).

    \[\mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{S}}+\frac{\mathrm{K}_{\mathrm{T}} \, \mathrm{C}_{\mathrm{p}}}{\mathrm{T} \, \mathrm{E}_{\mathrm{p}}}\]

    We differentiate this equation with respect to the amount of solute \(\mathrm{n}_{j}\) at fixed \(\mathrm{T}\), \(\mathrm{p}\) and amount of solvent \(\mathrm{n}_{1}\).

    \[\mathrm{E}_{\mathrm{pj}}=\mathrm{E}_{\mathrm{Sj}}+\frac{1}{\mathrm{~T}} \,\left[\frac{\mathrm{K}_{\mathrm{T}}}{\mathrm{E}_{\mathrm{p}}} \, \mathrm{C}_{\mathrm{pj}}+\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{p}}} \, \mathrm{K}_{\mathrm{Tj}}-\frac{\mathrm{K}_{\mathrm{T}} \, \mathrm{C}_{\mathrm{p}}}{\left(\mathrm{E}_{\mathrm{p}}\right)^{2}} \, \mathrm{E}_{\mathrm{pj}}\right]\]

    Or,

    \[\mathrm{E}_{\mathrm{pj}}=\mathrm{E}_{\mathrm{Sj}}+\frac{1}{\mathrm{~T}} \, \frac{\mathrm{K}_{\mathrm{T}} \, \mathrm{C}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{p}}} \,\left[\frac{\mathrm{C}_{\mathrm{p} j}}{\mathrm{C}_{\mathrm{p}}}+\frac{\mathrm{K}_{\mathrm{T} \mathrm{J}}}{\mathrm{K}_{\mathrm{T}}}-\frac{\mathrm{E}_{\mathrm{p} j}}{\mathrm{E}_{\mathrm{p}}}\right]\]

    We convert to volume intensive variables.

    \[\mathrm{E}_{\mathrm{pj}}=\mathrm{E}_{\mathrm{S} \mathrm{j}}+\frac{1}{\mathrm{~T}} \, \frac{\kappa_{\mathrm{T}} \, \mathrm{C}_{\mathrm{p}}}{\alpha_{\mathrm{p}} \, \mathrm{V}} \,\left[\frac{\mathrm{V} \, \mathrm{C}_{\mathrm{pj}}}{\mathrm{C}_{\mathrm{p}}}+\frac{\mathrm{V} \, \mathrm{K}_{\mathrm{T} j}}{\mathrm{~K}_{\mathrm{T}}}-\frac{\mathrm{V} \, \mathrm{E}_{\mathrm{p} j}}{\mathrm{E}_{\mathrm{p}}}\right]\]

    Or,

    \[E_{p j}=E_{S j}+\frac{1}{T} \, \frac{K_{T} \, \sigma}{\alpha_{p}} \,\left[\frac{C_{p j}}{\sigma}+\frac{K_{T_{j}}}{K_{T}}-\frac{E_{p j}}{\alpha_{p}}\right]\]

    But

    \[\varepsilon=K_{\mathrm{T}} \, \sigma / \mathrm{T} \, \alpha_{\mathrm{p}}\]

    Then,

    \[\frac{\mathrm{E}_{\mathrm{pj}}-\mathrm{E}_{\mathrm{S} j}}{\varepsilon}=-\frac{\mathrm{E}_{\mathrm{pj}}}{\alpha_{\mathrm{p}}}+\frac{\mathrm{K}_{\mathrm{T} j}}{\kappa_{\mathrm{T}}}+\frac{\mathrm{C}_{\mathrm{pj}}}{\sigma}\]

    Hence for an aqueous solution in the limit of infinite dilution,

    \[\frac{\mathrm{E}_{\mathrm{pj}}^{\infty}(\mathrm{aq})-\mathrm{E}_{\mathrm{sj}}^{\infty}(\mathrm{aq})}{\varepsilon_{1}^{*}(\ell)}=-\frac{\mathrm{E}_{\mathrm{pj}}^{\infty}(\mathrm{aq})}{\alpha_{\mathrm{p} 1}^{*}(\ell)}+\frac{\mathrm{K}_{\mathrm{T} j}^{\infty}(\mathrm{aq})}{\kappa_{\mathrm{T} 1}^{*}(\ell)}+\frac{\mathrm{C}_{\mathrm{pj}}^{\infty}}{\sigma_{1}^{*}(\ell)}\]

    We start with the equation,

    \[\mathrm{E}_{\mathrm{s}}=-\frac{\mathrm{K}_{\mathrm{s}} \, \mathrm{C}_{\mathrm{p}}}{\mathrm{T} \, \mathrm{E}_{\mathrm{p}}}\]

    The latter equation is differentiated with respect to the amount of solute \(\mathrm{n}_{j}\) in a solution at fixed \(\mathrm{T}\), fixed \(\mathrm{p}\) and fixed amount of solvent, \(\mathrm{n}_{1}\).

    \[\begin{aligned}
    \left(\frac{\partial E_{S}}{\partial n_{j}}\right)_{T, p, n(1)}=-\frac{C_{p}}{T \, E_{p}} \,\left(\frac{\partial K_{s}}{\partial n_{j}}\right)_{T, p, n(1)}-\frac{K_{s}}{T \, E_{p}} \,\left(\frac{\partial C_{p}}{\partial n_{j}}\right)_{T, p, n(1)} \\
    &+\frac{K_{s} \, C_{p}}{T \,\left(E_{p}\right)^{2}} \,\left(\frac{\partial E_{p}}{\partial n_{j}}\right)_{T, p, n(1)}
    \end{aligned}\]

    Or,

    \[E_{S_{j}}=-\frac{C_{p}}{T \, E_{p}} \, \frac{K_{s}}{K_{s}} \, K_{s_{j}}-\frac{K_{s}}{T \, E_{p}} \, \frac{C_{p}}{C_{p}} \, C_{p j}+\frac{K_{s} \, C_{p}}{T \,\left(E_{p}\right)^{2}} \, E_{p j}\]

    We rewrite the latter equation in terms of volume intensive variables.

    \[\mathrm{E}_{\mathrm{Sj}}=-\frac{1}{\mathrm{~T}} \, \frac{\sigma}{\alpha_{\mathrm{p}}} \, \frac{\kappa_{\mathrm{s}}}{\kappa_{\mathrm{s}}} \, \mathrm{K}_{\mathrm{Sj}}-\frac{1}{\mathrm{~T}} \, \frac{\kappa_{\mathrm{S}}}{\alpha_{\mathrm{p}}} \, \frac{\sigma}{\sigma} \, \mathrm{C}_{\mathrm{pj}}+\frac{\kappa_{\mathrm{s}} \, \sigma}{\mathrm{T} \,\left(\alpha_{\mathrm{p}}\right)^{2}} \, \mathrm{E}_{\mathrm{pj}}\]

    But

    \[\alpha_{\mathrm{s}}=-\frac{\kappa_{\mathrm{s}} \, \sigma}{\mathrm{T} \, \alpha_{\mathrm{p}}}\]

    Then

    \[E_{\mathrm{S}_{\mathrm{j}}}=\alpha_{\mathrm{s}} \, \frac{\mathrm{K}_{\mathrm{s} \mathrm{j}}}{\kappa_{\mathrm{s}}}+\alpha_{\mathrm{s}} \, \frac{\mathrm{C}_{\mathrm{p} j}}{\sigma}-\alpha_{\mathrm{s}} \, \frac{\mathrm{E}_{\mathrm{pj}}}{\alpha_{\mathrm{p}}}\]

    Therefore (with a change of order)

    \[\frac{E_{\mathrm{s} j}}{\alpha_{p}}=-\frac{E_{p j}}{\alpha_{p}}+\frac{K_{S j}}{K_{s}}+\frac{C_{p j}}{\sigma}\]


    This page titled 1.12.21: Expansions- Solutions- Partial Molar Isobaric and Isentropic is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.