Skip to main content
Chemistry LibreTexts

1.11.2: Gibbs-Duhem Equation- Salt Solutions- Osmotic and Activity Coefficients

  • Page ID
    379478
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We consider an aqueous solution prepared using \(1 \mathrm{~kg}\) of solvent, water, at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\) (\(\cong p^{0}\)). For an aqueous salt solution, the chemical potential \(\mu_{j}(\mathrm{aq})\) for salt \(j\) at molality \(\mathrm{m}_{j}\) is given by equation (a) where \(\gamma_{\pm}\) is the mean ionic activity coefficient of the salt.

    \[\mu_{\mathrm{j}}(\mathrm{aq})=\mu_{\mathrm{j}}^{0}(\mathrm{aq})+\mathrm{v} \, \mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{Q} \, \mathrm{m}_{\mathrm{j}} \, \gamma_{\pm} / \mathrm{m}^{0}\right)\]

    By definition, at all \(\mathrm{T}\) and \(\mathrm{p}\),

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \gamma_{\pm}=1\]

    For the solvent, water,

    \[\mu_{1}(\mathrm{aq})=\mu_{1}^{\star}(\ell)-\mathrm{v} \, \mathrm{R} \, \mathrm{T} \, \phi \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}\]

    By definition, at all \(\mathrm{T}\) and \(\mathrm{p}\),

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \phi=1.0\]

    Chemical potentials \(\mu_{j}(\mathrm{aq})\) and \(\mu_{1}(\mathrm{aq})\) are linked by the Gibbs-Duhem equation. This,

    \[\left(1 / M_{1}\right) \, d \mu_{1}(a q)+v \, m_{j} \, d \mu_{j}(a q)=0\]

    \[\begin{aligned}
    &\left(1 / \mathrm{M}_{1}\right) \, \mathrm{d}\left[\mu_{1}^{*}(\ell)-\mathrm{v} \, \mathrm{R} \, \mathrm{T} \, \phi \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}\right] \\
    &\quad+\mathrm{v} \, \mathrm{m}_{\mathrm{j}} \, \mathrm{d}\left[\mu_{\mathrm{j}}^{0}(\mathrm{aq})+\mathrm{v} \, \mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{Q} \, \mathrm{m}_{\mathrm{j}} \, \gamma_{\pm} / \mathrm{m}^{0}\right]=0\right.
    \end{aligned}\]

    \[\begin{aligned}
    &-v \, R \, T \, d\left[\phi \, m_{j}\right] \\
    &+v \, m_{j} \, v \, R \, T \, d\left[\ln (Q)+\ln \left(m_{j}\right)+\ln \left(\gamma_{\pm}\right)-\ln \left(m^{0}\right)\right]=0
    \end{aligned}\]

    \[-\mathrm{d}\left[\phi \, \mathrm{m}_{\mathrm{j}}\right]+\mathrm{v} \, \mathrm{m}_{\mathrm{j}} \,\left\{\mathrm{d} \ln \left(\mathrm{m}_{\mathrm{j}}\right)+\mathrm{d} \ln \left(\gamma_{\pm}\right)\right\}=0\]

    \[-\phi \, d m_{j}-m_{j} \, d \phi+v \, m_{j} \, d \ln \left(m_{j}\right)+v \, m_{j} \, d \ln \left(\gamma_{\pm}\right)=0\]

    Then,

    \[-\phi \, d m_{j}-m_{j} \, d \phi+v \, d m_{j}+v \, m_{j} \, d \ln \left(\gamma_{\pm}\right)=0\]

    \[v \, m_{j} \, d \ln \left(\gamma_{\pm}\right)=\phi \, d m_{j}-v \, d m_{j}+m_{j} \, d \phi\]

    Or,

    \[\mathrm{d} \ln \left(\gamma_{\pm}\right)=(\phi-v) \, \frac{\mathrm{dm}_{\mathrm{j}}}{\mathrm{v} \, \mathrm{m}_{\mathrm{j}}} + \frac{\mathrm{d} \phi}{\mathrm{v}}\]

    For a solute where one mole of pure solute forms one mole of solute in solution,

    \[\mathrm{d} \ln \left(\gamma\right)=(\phi-1) \, \frac{\mathrm{dm}_{\mathrm{j}}}{\mathrm{m}_{\mathrm{j}}} + \mathrm{d} \phi\]

    Then,

    \[\ln (\gamma)=(\phi-1) \,+\int_{0}^{\mathrm{m}(\mathrm{j})}(\phi-1) \, \mathrm{d} \ln \left(\mathrm{m}_{\mathrm{j}}\right)\]


    This page titled 1.11.2: Gibbs-Duhem Equation- Salt Solutions- Osmotic and Activity Coefficients is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.