Skip to main content
Chemistry LibreTexts

1.11.1: Gibbs-Duhem Equation

  • Page ID
    379477
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    This equation is at the heart of chemical thermodynamics. The Gibbs energy of a closed system can be expressed as follows.

    \[\mathrm{G}=\mathrm{G}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{\mathrm{i}}\right] \nonumber \]

    Here \(\mathrm{n}_{\mathrm{i}}\) represents the amounts of all chemical substances in the system. Then for a system containing two chemical substances, 1 and 2,

    \[\mathrm{G}=\mathrm{G}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{2}\right] \nonumber \]

    If we prepare a system containing \(\mathrm{k} \, \mathrm{n}_{1}\) and \(\mathrm{k} \, \mathrm{n}_{2}\) moles of the two chemical substances [cf. Euler’s Theorem], the Gibbs energy increases by a factor, \(\mathrm{k}\). Hence,

    \[\mathrm{G}=\mathrm{n}_{1} \, \mu_{1}+\mathrm{n}_{2} \, \mu_{2} \nonumber \]

    In general [1],

    \[\mathrm{G}=\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mathrm{n}_{\mathrm{j}} \, \mu_{\mathrm{j}} \nonumber \]

    Equation (c) is differentiated [2].

    \[\mathrm{dG}=\mathrm{n}_{1} \, \mathrm{d} \mu_{1}+\mu_{1} \, \mathrm{dn} \mathrm{n}_{1}+\mathrm{n}_{2} \, \mathrm{d} \mu_{2}+\mu_{2} \, \mathrm{dn}_{2} \nonumber \]

    But [3],

    \[\mathrm{dG}=-\mathrm{S} \, \mathrm{dT}+\mathrm{V} \, \mathrm{dp}+\mu_{1} \, \mathrm{dn}_{1}+\mu_{2} \, \mathrm{dn}_{2} \nonumber \]

    Therefore, combining equations (c) and (f),

    \[-S \, d T+V \, d p-n_{1} \, d \mu_{1}-n_{2} \, d \mu_{2}=0 \nonumber \]

    Therefore, for a system held at fixed \(\mathrm{T}\) and \(\mathrm{p}\) [4],

    \[\mathrm{n}_{1} \, \mathrm{d} \mu_{1}+\mathrm{n}_{2} \, \mathrm{d} \mu_{2}=0 \nonumber \]

    Equation (h) expresses the ‘communication’ between the two chemical substances in the system. In some senses equation (h) is a Happy Family Equation. If the chemical potential of substance 1, \(\mu_{1}\) increases [i.e. \(\mathrm{d} \mu_{1}> 0\)], the chemical potential of chemical substance 2 decreases, [i.e. \(\mathrm{d} \mu_{2}<0\)], in order to hold the condition expressed by equation (h) [5].

    Footnotes

    [1] Similarly \(\mathrm{U}=\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mathrm{n}_{\mathrm{j}} \, \mu_{\mathrm{j}}+\mathrm{T} \, \mathrm{S}-\mathrm{p} \, \mathrm{V}\) \(\mathrm{H}=\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mathrm{n}_{\mathrm{j}} \, \mu_{\mathrm{j}}+\mathrm{T} \, \mathrm{S}\) and \(F=\sum_{j=1}^{j=i} n_{j} \, \mu_{j}-p \, V\)

    [2] Generally, \(\mathrm{dG}=\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}}\left[\mathrm{n}_{\mathrm{j}} \, \mathrm{d} \mu_{\mathrm{j}}+\mu_{\mathrm{j}} \, \mathrm{dn} \mathrm{n}_{\mathrm{j}}\right]\)

    [3] Generally \(\mathrm{dG}=-\mathrm{S} \, \mathrm{dT}+\mathrm{V} \, \mathrm{dp}+\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mu_{\mathrm{j}} \, \mathrm{dn}_{\mathrm{j}}\(

    [4] Generally \(\sum_{j=1}^{j=i} n_{j} \, d \mu_{j}=0\)

    [5] If one member of a family is sad for some reason, other members of the family say something along the lines, ‘cheer up --it is not as bad as all that’. If another member of the family becomes over-excited, the family says something along the lines, ‘calm down’. Similar things happen to chemical substances in a closed system at fixed \(\mathrm{T}\) and \(\mathrm{p}\).


    This page titled 1.11.1: Gibbs-Duhem Equation is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.