Skip to main content
Chemistry LibreTexts

1.11.3: Gibbs-Duhem Equation- Solvent and Solutes- Aqueous Solutions

  • Page ID
    379665
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A given aqueous solution at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\) (which is close to the standard pressure) is prepared using water (\(1 \mathrm{~kg}\)) and \(\mathrm{m}_{\mathrm{j}}\) moles of solute-\(\mathrm{j}\). The chemical potential of solute–j is given by equation (a) where \(\mu_{\mathrm{j}}^{0}(\mathrm{aq})\) is the chemical potential of solute-\(\mathrm{j}\) in an aqueous solutions where \(\mathrm{m}_{\mathrm{j}} = 1 \mathrm{~mol kg}^{-1}\) and the thermodynamic properties of the solution are ideal.

    \[\mu_{\mathrm{j}}(\mathrm{aq})=\mu_{\mathrm{j}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{j}} \, \gamma_{\mathrm{j}} / \mathrm{m}^{0}\right)\]

    At all \(\mathrm{T}\) and \(\mathrm{p}\),

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \gamma_{\mathrm{j}}=1\]

    The chemical potential of solvent, water \(\mu_{1}(\mathrm{aq})\) is given by equation (c) where \(\mu_{1}^{*}(\ell)\) is the chemical potential of water(\(\ell\)) at the same \(\mathrm{T}\) and \(\mathrm{p}\); \(\phi\) is the molal osmotic coefficient.

    \[\mu_{1}(\mathrm{aq})=\mu_{1}^{*}(\ell)-\phi \, \mathrm{R} \, \mathrm{T} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}\]

    At all \(\mathrm{T}\) and \(\mathrm{p}\),

    \[\operatorname{limit}\left(\mathrm{m}_{\mathrm{j}} \rightarrow 0\right) \phi=1\]

    For a solution at fixed \(\mathrm{T}\) and \(\mathrm{p}\), the Gibbs-Duhem equation relates \(\mu_{1}(\mathrm{aq})\) and \(\mu_{\mathrm{j}}(\mathrm{aq})\) using equation (e).

    \[\left(1 / \mathrm{M}_{1}\right) \, \mathrm{d} \mu_{1}(\mathrm{aq})+\mathrm{m}_{\mathrm{j}} \, \mathrm{d} \mu_{\mathrm{j}}(\mathrm{aq})=0\]

    Therefore

    \[\begin{aligned}
    &\left(1 / \mathrm{M}_{1}\right) \, \mathrm{d}\left[\mu_{1}^{*}(\ell)-\phi \, \mathrm{R} \, \mathrm{T} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}\right] \\
    &+\mathrm{m}_{\mathrm{j}} \, \mathrm{d}\left[\mu_{\mathrm{j}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{j}} \, \gamma_{\mathrm{j}} / \mathrm{m}^{0}\right)\right]=0
    \end{aligned}\]

    Thus,

    \[\mathrm{d}\left(-\phi \, \mathrm{m}_{\mathrm{j}}\right)+\mathrm{m}_{\mathrm{j}} \, \mathrm{d} \ln \left(\mathrm{m}_{\mathrm{j}} \, \gamma_{\mathrm{j}}\right)=0\]

    \[-\phi \, d m_{j}-m_{j} \, d \phi+m_{j} \, d \ln \left(m_{j}\right)+m_{j} \, d \ln \left(\gamma_{j}\right)=0\]

    From equation (h) (dividing by \(\mathrm{m}_{\mathrm{j}}\))

    \[-\phi \, d \ln \left(m_{j}\right)-d \phi+d \ln \left(m_{j}\right)+d \ln \left(\gamma_{j}\right)=0\]

    \[\mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right)=\mathrm{d} \phi-(1-\phi) \, \mathrm{d} \ln \left(\mathrm{m}_{\mathrm{j}}\right)\]

    The latter equation is integrated between the limits ‘\(\mathrm{m}_{\mathrm{j}} = 0\)’ and \(\mathrm{m}_{\mathrm{j}}\); equivalent to limits ‘\(\phi =1\)’ and \(\phi\).

    \[\int_{0}^{m(j)} d \ln \left(\gamma_{j}\right)=\int_{\phi=1}^{\phi} \mathrm{d} \phi-\int_{0}^{m(j)}(1-\phi) \, d \ln \left(m_{j}\right)\]

    Then,

    \[-\ln \left(\gamma_{\mathrm{j}}\right)=(1-\phi)+\int_{0}^{\mathrm{m}(\mathrm{j})}(1-\phi) \, \mathrm{d} \ln \left(\mathrm{m}_{\mathrm{j}}\right)\]

    From equation (g)

    \[\mathrm{d}\left[\phi \, \mathrm{m}_{\mathrm{j}}\right]=\mathrm{m}_{\mathrm{j}} \, \mathrm{d}\left[\ln \left(\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right)\right]+\mathrm{m}_{\mathrm{j}} \, \mathrm{d}\left[\ln \left(\gamma_{\mathrm{j}}\right)\right]\]

    or,

    \[\mathrm{d}\left[\phi \, \mathrm{m}_{\mathrm{j}}\right]=\mathrm{m}^{0} \, \mathrm{d}\left[\mathrm{m}_{\mathrm{j}} / \mathrm{m}^{0}\right]+\mathrm{m}_{\mathrm{j}} \, \mathrm{d}\left[\ln \left(\gamma_{\mathrm{j}}\right)\right]\]

    Following integration from ‘\(\mathrm{m}_{\mathrm{j}} = 0\)’ to \(\mathrm{m}_{\mathrm{j}}\),

    \[\phi \, \mathrm{m}_{\mathrm{j}}=\mathrm{m}_{\mathrm{j}}+\int_{0}^{\mathrm{m}_{\mathrm{j}}} \mathrm{m}_{\mathrm{j}} \, \mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right)\]

    or,

    \[\phi=1+\left(1 / \mathrm{m}_{\mathrm{j}}\right) \, \int_{0}^{\mathrm{m}_{\mathrm{j}}} \mathrm{m}_{\mathrm{j}} \, \mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right)\]

    Hence,

    \[\phi-1=\left(1 / \mathrm{m}_{\mathrm{j}}\right) \, \int_{0}^{\mathrm{m}_{\mathrm{j}}} \mathrm{m}_{\mathrm{j}} \, \mathrm{d} \ln \left(\gamma_{\mathrm{j}}\right)\]

    In other words, \((\phi-1)\) is related to the integral of \(\mathrm{m}_{\mathrm{j}} \, \mathrm{d} \ln \gamma_{\mathrm{j}}\) between the limits ‘\(\mathrm{m}_{\mathrm{j}} = 0\)’ and \(\mathrm{m}_{\mathrm{j}}\). Equation (q) marks the limit of the thermodynamics analysis. However we explore the significance of the equation by adopting an equation relating \(\phi\) and \(\mathrm{m}_{\mathrm{j}}\). Equation (r) signals one assumption in which \(\mathrm{r}\) is a parameter characteristic of the solution under examination. Thus

    \[\phi-1=\alpha \,\left(\mathrm{m}_{\mathrm{j}}\right)^{\mathrm{r}}\]

    Then [1]

    \[-\ln \left(\gamma_{\mathrm{j}}\right)=(1-\phi) \,(1+\mathrm{r}) / \mathrm{r}\]

    Or,

    \[(1-\phi)=[r /(1+r)] \,\left\{-\ln \left(\gamma_{j}\right)\right\}\]

    From equation (m),

    \[\phi=1-\alpha \,\left(\mathrm{m}_{\mathrm{j}}\right)^{\mathrm{r}}\]

    If for example, \(\alpha > 1\), then \(\phi < 1\) for all solutions. According to equation (c),

    \[\mu_{1}(\mathrm{aq})-\mu_{1}^{*}(\ell)=-\left[1-\alpha \,\left(\mathrm{m}_{\mathrm{j}}\right)^{\mathrm{t}}\right] \, \mathrm{R} \, \mathrm{T} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}\]

    If therefore \(\phi>1, \mu_{1}(\mathrm{aq})<\mu_{1}^{*}(\ell)\); relative to the chemical potential of the pure solvent, the solvent in the solution is stabilised. For the solute according to equation (n),

    \[-\ln \left(\gamma_{\mathrm{j}}\right)=[(1+\mathrm{r}) / \mathrm{r}] \,\left[\alpha \,\left(\mathrm{m}_{\mathrm{j}}\right)^{\mathrm{r}}\right]\]

    Or, [Bjerrum’s Equation]

    \[-\ln \left(\gamma_{\mathrm{j}}\right)=[(1+\mathrm{r}) / \mathrm{r}] \,[1-\phi]\]

    Footnotes

    [1] From equations (q) and (s),

    \[-\ln \left(\gamma_{\mathrm{j}}\right)=\alpha \,\left(\mathrm{m}_{\mathrm{j}}\right)^{\mathrm{r}}+\alpha \, \int_{0}^{\mathrm{m}(\mathrm{j})}\left(\mathrm{m}_{\mathrm{j}}\right)^{\mathrm{r}-1} \, d \mathrm{~m}_{\mathrm{j}}\]

    Then,

    \[\begin{aligned}
    -\ln \left(\gamma_{\mathrm{j}}\right) &=\alpha \,\left(\mathrm{m}_{\mathrm{j}}\right)^{\mathrm{r}}+\alpha \,\left(\mathrm{m}_{\mathrm{j}}\right)^{\mathrm{r}} / \mathrm{r} \\
    &=\alpha \,\left(\mathrm{m}_{\mathrm{j}}\right)^{\mathrm{r}} \,[1+(1 / \mathrm{r})]
    \end{aligned}\]

    Hence, \(-\ln \left(\gamma_{\mathrm{j}}\right)=\alpha \,\left(\mathrm{m}_{\mathrm{j}}\right)^{\mathrm{r}} \,[1+\mathrm{r}] / \mathrm{r}\)


    This page titled 1.11.3: Gibbs-Duhem Equation- Solvent and Solutes- Aqueous Solutions is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.