Skip to main content
Chemistry LibreTexts

1.7.10: Compressions- Desnoyers - Philip Equation

  • Page ID
    374154
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In terms of isentropic and isothermal compressibilities the Desnoyers-Philip Equation is important. A key equation expresses the difference between two apparent properties, \(\phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{J}}}\right)^{\infty}\) and \(\phi\left(\mathrm{K}_{\mathrm{Sj}} ; \operatorname{def}\right)^{\infty}\) [1]. We develop the proof in the general case starting from equation (a).

    \[\delta=\kappa_{\mathrm{T}}-\kappa_{\mathrm{S}}=\mathrm{T} \,\left(\alpha_{\mathrm{p}}\right)^{2} / \sigma \nonumber \]

    \[\text { Hence, for an aqueous solution, } \delta(\mathrm{aq})=T \,\left[\alpha_{\mathrm{p}}(\mathrm{aq})\right]^{2} / \sigma(\mathrm{aq}) \nonumber \]

    \[\text { For water }(\ell) \text { at the same } \mathrm{T} \text { and } \mathrm{p}, \delta_{1}^{*}(\ell)=\mathrm{T} \,\left[\alpha_{\mathrm{p} 1}^{*}(\ell)\right]^{2} / \sigma_{1}^{*}(\ell) \nonumber \]

    We formulate an equation for the difference, \(\delta(\mathrm{aq})-\delta_{1}^{*}(\ell)\)

    \[\delta(\mathrm{aq})-\delta_{1}^{*}(\ell)=\mathrm{T} \,\left[\alpha_{\mathrm{p}}(\mathrm{aq})\right]^{2} / \sigma(\mathrm{aq})-\mathrm{T} \,\left[\alpha_{\mathrm{p} 1}^{*}(\ell)\right]^{2} / \sigma_{1}^{*}(\ell) \nonumber \]

    We add and subtract the same term. With some slight reorganisation,

    \[\begin{aligned}
    \delta(\mathrm{aq})-\delta_{1}^{*}(\ell)=& \mathrm{T} \,\left[\alpha_{\mathrm{p}}(\mathrm{aq})\right]^{2} / \sigma(\mathrm{aq})-\mathrm{T} \,\left[\alpha_{\mathrm{p} 1}^{*}(\ell)\right]^{2} / \sigma(\mathrm{aq}) \\
    &-\mathrm{T} \,\left[\alpha_{\mathrm{p} 1}^{*}(\ell)\right]^{2} / \sigma_{1}^{*}(\ell)+\mathrm{T} \,\left[\alpha_{\mathrm{p} 1}^{*}(\ell)\right]^{2} / \sigma(\mathrm{aq})
    \end{aligned} \nonumber \]

    Or,

    \[\begin{aligned}
    \delta(\mathrm{aq})-\delta_{1}^{*}(\ell)=& \mathrm{T} \,[\sigma(\mathrm{aq})]^{-1} \,\left\{\left[\alpha_{\mathrm{p}}(\mathrm{aq})\right]^{2}-\left[\alpha_{\mathrm{p} 1}^{*}(\ell)\right]^{2}\right\} \\
    &-\mathrm{T} \,\left[\alpha_{\mathrm{p} 1}^{*}(\ell)\right]^{2} \,\left[\frac{1}{\sigma_{1}^{*}(\ell)}-\frac{1}{\sigma(\mathrm{aq})}\right]
    \end{aligned} \nonumber \]

    We identify the term \(\left\{\left[\alpha_{p}(a q)\right]^{2}-\left[\alpha_{p 1}^{*}(\ell)\right]^{2}\right\}\) as ‘a square minus a square’.

    \[\begin{aligned}
    \delta(\mathrm{aq})-\delta_{1}^{*}(\ell)=& \mathrm{T} \,[\sigma(\mathrm{aq})]^{-1} \,\left\{\alpha_{\mathrm{p}}(\mathrm{aq})+\alpha_{\mathrm{p} 1}^{*}(\ell)\right\} \,\left\{\alpha_{\mathrm{p}}(\mathrm{aq})-\alpha_{\mathrm{p} 1}^{*}(\ell)\right\} \\
    &-\mathrm{T} \, \frac{\left[\alpha_{\mathrm{p} 1}^{*}(\ell)\right]^{2}}{\sigma(\mathrm{aq}) \, \sigma_{1}^{*}(\ell)} \,\left[\sigma(\mathrm{aq})-\sigma_{1}^{*}(\ell)\right]
    \end{aligned} \nonumber \]

    We use equations (b) for \(\delta(\mathrm{aq})\) and (c) for \(\delta_{1}^{*}(\ell)\) to remove explicit reference to temperature in equation (g).

    \[\begin{aligned}
    &\delta(\mathrm{aq})-\delta_{1}^{*}(\ell)= \\
    &\delta(\mathrm{aq}) \,\left[\alpha_{\mathrm{p}}(\mathrm{aq})\right]^{-2} \,\left\{\alpha_{\mathrm{p}}(\mathrm{aq})+\alpha_{\mathrm{p} 1}^{*}(\ell)\right\} \,\left\{\alpha_{\mathrm{p}}(\mathrm{aq})-\alpha_{\mathrm{pl}}^{*}(\ell)\right\} \\
    &-\delta_{1}^{*}(\ell) \,[\sigma(\mathrm{aq})]^{-1} \,\left[\sigma(\mathrm{aq})-\sigma_{1}^{*}(\ell)\right]
    \end{aligned} \nonumber \]

    \[\text { But } \phi\left(\mathrm{K}_{\mathrm{Tj}_{\mathrm{j}}}\right)-\phi\left(\mathrm{K}_{\mathrm{Sj}} ; \operatorname{def}\right)=\left(\mathrm{c}_{\mathrm{j}}\right)^{-1} \,\left[\delta(\mathrm{aq})-\delta_{1}^{*}(\ell)\right]+\delta_{1}^{*}(\ell) \, \phi\left(\mathrm{V}_{\mathrm{j}}\right) \nonumber \]

    We insert equation (h) for the difference \(\delta(\mathrm{aq})-\delta_{1}^{*}(\ell)\) into equation (i).

    \[\begin{aligned}
    &\phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)-\phi\left(\mathrm{K}_{\mathrm{Sj}} ; \mathrm{def}\right)= \\
    &\frac{\delta(\mathrm{aq}) \,\left[\alpha_{\mathrm{p}}(\mathrm{aq})+\alpha_{\mathrm{p} 1}^{*}(\ell)\right]}{\left[\alpha_{\mathrm{p}}(\mathrm{aq})\right]^{2}} \, \frac{\left[\alpha_{\mathrm{p}}(\mathrm{aq})-\alpha_{\mathrm{p} 1}^{*}(\ell)\right]}{\mathrm{c}_{\mathrm{j}}} \\
    &-\frac{\delta_{1}^{*}(\ell)}{\sigma(\mathrm{aq})} \, \frac{\left[\sigma(\mathrm{aq})-\sigma_{1}^{*}(\ell)\right]}{\mathrm{c}_{\mathrm{j}}}+\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \delta_{1}^{*}(\ell)
    \end{aligned} \nonumber \]

    \[\text { But, } \phi\left(E_{p j}\right)=\left[c_{j}\right]^{-1} \,\left[\alpha_{p}(a q)-\alpha_{p l}^{*}(\ell)\right]+\alpha_{p 1}^{*}(\ell) \, \phi\left(V_{j}\right) \nonumber \]

    We identify the difference \(\left[\alpha_{p}(a q)-\alpha_{p 1}^{*}(\ell)\right]\).

    \[\text { Then } \phi\left(E_{p j}\right)-\alpha_{p 1}^{*}(\ell) \, \phi\left(V_{j}\right)=\left[c_{j}\right]^{-1} \,\left[\alpha_{p}(a q)-\alpha_{p 1}^{*}(\ell)\right] \nonumber \]

    \[\text { Similarly } \phi\left(\mathrm{C}_{\mathrm{pj}}\right)-\sigma_{1}^{*}(\ell) \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)=\left[\mathrm{c}_{\mathrm{j}}\right]^{-1} \,\left[\sigma(\mathrm{aq})-\sigma_{1}^{*}(\ell)\right] \nonumber \]

    Then from equations (k), (l), (m) and (n),

    \[\begin{gathered}
    \phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)-\phi\left(\mathrm{K}_{\mathrm{Sj}} ; \operatorname{def}\right)=\frac{\delta(\mathrm{aq}) \,\left[\alpha_{\mathrm{p}}(\mathrm{aq})+\alpha_{\mathrm{p} 1}^{*}(\ell)\right]}{\left[\alpha_{\mathrm{p}}(\mathrm{aq})\right]^{2}} \,\left[\phi\left(\mathrm{E}_{\mathrm{pj}}\right)-\alpha_{\mathrm{p} 1}^{*}(\ell) \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\right] \\
    -\frac{\delta_{1}^{*}(\ell)}{\sigma(\mathrm{aq})} \,\left[\phi\left(\mathrm{C}_{\mathrm{pj}}\right)-\sigma_{1}^{*}(\ell) \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\right]+\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \delta_{1}^{*}(\ell)
    \end{gathered} \nonumber \]

    We collect the \(\phi\left(\mathrm{V}_{\mathrm{j}}\right)\) terms.

    \[\begin{gathered}
    \phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)-\phi\left(\mathrm{K}_{\mathrm{sj}} ; \mathrm{def}\right)= \\
    \frac{\delta(\mathrm{aq})}{\alpha_{\mathrm{p}}(\mathrm{aq})} \,\left\{1+\frac{\alpha_{\mathrm{p} 1}^{*}(\ell)}{\alpha_{\mathrm{p}}(\mathrm{aq})}\right\} \, \phi\left(\mathrm{E}_{\mathrm{pj}}\right)-\frac{\delta_{1}^{*}(\ell)}{\sigma(\mathrm{aq})} \, \phi\left(\mathrm{C}_{\mathrm{pj}}\right) \\
    +\left\{-\frac{\delta(\mathrm{aq}) \, \alpha_{\mathrm{p} 1}^{*}(\ell)}{\alpha_{\mathrm{p}}(\mathrm{aq})}-\frac{\delta(\mathrm{aq}) \,\left[\alpha_{\mathrm{p} 1}^{*}(\ell)\right]^{2}}{\left[\alpha_{\mathrm{p}}(\mathrm{aq})\right]^{2}}+\frac{\delta_{1}^{*}(\ell) \, \sigma_{1}^{*}(\ell)}{\sigma(\mathrm{aq})}+\delta_{1}^{*}(\ell)\right\} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)
    \end{gathered} \nonumber \]

    We note that in the second {----} bracket, the product term of \(\phi\left(\mathrm{V}_{\mathrm{j}}\right)\). By using equations (b) for \(\delta(\mathrm{aq})\) and (c) for \(\delta_{1}^{*}(\ell)\) the second and third terms are together equal to zero.

    Hence

    \[\begin{aligned}
    &\phi\left(\mathrm{K}_{\mathrm{Tj}}\right)-\phi\left(\mathrm{K}_{\mathrm{Sj}} ; \mathrm{def}\right)= \\
    &\qquad \frac{\delta(\mathrm{aq})}{\alpha_{\mathrm{p}}(\mathrm{aq})} \,\left\{1+\frac{\alpha_{\mathrm{p} 1}^{*}(\ell)}{\alpha_{\mathrm{p}}(\mathrm{aq})}\right\} \, \phi\left(\mathrm{E}_{\mathrm{pj}}\right)-\frac{\delta_{1}^{*}(\ell)}{\sigma(\mathrm{aq})} \, \phi\left(\mathrm{C}_{\mathrm{pj}}\right) \\
    &+\left\{\delta_{1}^{*}(\ell)-\frac{\delta(\mathrm{aq}) \, \alpha_{\mathrm{p} 1}^{*}(\ell)}{\alpha_{\mathrm{p}}(\mathrm{aq})}\right\} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)
    \end{aligned} \nonumber \]

    The latter is the full Desnoyers–Philip equation [1]. But

    \[\begin{gathered}
    \operatorname{limit}\left(c_{j} \rightarrow 0\right) \alpha_{p}(a q)=\alpha_{p l}^{*}(\ell) \\
    \phi\left(E_{p j}\right)=\phi\left(E_{p j}\right)^{\infty}, \\
    \phi\left(C_{p j}\right)=\phi\left(C_{p j}\right)^{\infty}, \delta(a q)=\delta_{1}^{*}(\ell) \\
    \text { and } \sigma(a q)=\sigma_{1}^{*}(\ell)
    \end{gathered} \nonumber \]

    \[\text { Then } \phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)^{\infty}-\phi\left(\mathrm{K}_{\mathrm{Sj}} ; \text { def }\right)^{\infty}=\delta_{1}^{*}(\ell) \,\left\{\frac{2 \, \phi\left(\mathrm{E}_{\mathrm{pj}}\right)^{\infty}}{\alpha_{\mathrm{p} 1}^{*}(\ell)}-\frac{\phi\left(\mathrm{C}_{\mathrm{pj}}\right)^{\infty}}{\sigma_{1}^{*}(\ell)}\right\} \nonumber \]

    Footnotes

    [1] J. E. Desnoyers and P. R. Philip, Can. J. Chem, 1972, 50,1094.

    [2] M. J. Blandamer, M. I. Davis, G. Douheret and J. C. R. Reis, Chem. Soc. Rev., 2001, 30, 8.


    This page titled 1.7.10: Compressions- Desnoyers - Philip Equation is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.