Skip to main content
Chemistry LibreTexts

1.7.11: Compression- Isentropic- Apparent Molar Volume

  • Page ID
    374155
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A given liquid system is prepared using \(\mathrm{n}_{1}\) moles of water, molar mass \(\mathrm{M}_{1}\), and \(\mathrm{n}_{j}\) moles of substance \(j\). The closed system is at equilibrium, at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\). The volume of the system is given by equation (a).

    \[\mathrm{V}(\mathrm{aq})=\mathrm{n}_{1} \, \mathrm{V}_{\mathrm{1}}^{*}(\ell)+\mathrm{n}_{\mathrm{j}} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right) \nonumber \]

    Here \(V_{1}^{*}(\ell)\) is the molar volume of pure water and \(\phi\left(\mathrm{V}_{\mathrm{j}}\right)\) is the apparent molar volume of substance \(j\) in the system; \(\mathrm{V}(\mathrm{aq})\) and \(\phi\left(\mathrm{V}_{\mathrm{j}}\right)\) depend on the composition of the system, but \(\mathrm{V}_{1}^{*}(\ell)\) does not.

    The solution is perturbed to a local equilibrium state by a change in pressure along a path for which the entropy remains constant at \(\mathrm{S}(\mathrm{aq})\). At a specified molality \(\mathrm{m}_{j the change in volume is characterised by the isentropic compressibility, \(\mathrm{K}_{\mathrm{s}}(\mathrm{aq})\) defined in equation (b).

    \[\kappa_{\mathrm{s}}(\mathrm{aq})=-\frac{1}{\mathrm{~V}(\mathrm{aq})} \,\left(\frac{\partial \mathrm{V}(\mathrm{aq})}{\partial \mathrm{p}}\right)_{\mathrm{s}(\mathrm{aq}) ; \mathrm{m}(\mathrm{j})} \nonumber \]

    Hence,

    \[\mathrm{V}(\mathrm{aq}) \, \mathrm{K}_{\mathrm{s}}(\mathrm{aq})=-\mathrm{n}_{1} \,\left(\frac{\partial \mathrm{V}_{1}^{*}(\ell)}{\partial \mathrm{p}}\right)_{\mathrm{S}(\mathrm{aq}) ; \mathrm{m}(\mathrm{j})}-\mathrm{n}_{\mathrm{j}} \,\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{p}}\right)_{\mathrm{S}(\mathrm{aq}) ; \mathrm{m}(\mathrm{j})} \nonumber \]

    The isentropic condition on the first partial differential in equation (c) refers to the entropy of an aqueous solution at molality, \(\mathrm{m}_{j}\). There is interest in relating this partial differential to the isentropic compressibility of the pure liquid substance 1 at the same \(\mathrm{T}\) and \(\mathrm{p}\), which is defined in equation (d).

    \[\kappa_{\mathrm{s} 1}^{*}(\ell)=-\frac{1}{\mathrm{~V}_{1}^{*}(\ell)} \,\left(\frac{\partial \mathrm{V}_{1}^{*}(\ell)}{\partial \mathrm{p}}\right)_{\mathrm{s}^{*}(\ell)} \nonumber \]

    For substance 1 the different isentropic conditions are related by equation (e).

    \[\left(\frac{\partial \mathrm{V}_{1}^{*}(\ell)}{\partial \mathrm{p}}\right)_{\mathrm{s}^{*}(\mathrm{aq}) \mathrm{m}(\mathrm{j})}=\left(\frac{\partial \mathrm{V}_{1}^{*}(\ell)}{\partial \mathrm{p}}\right)_{\mathrm{s}^{*}(\ell)}+\left(\frac{\partial \mathrm{S}_{1}^{*}(\ell)}{\partial \mathrm{p}}\right)_{\mathrm{S}(\mathrm{aq}) / \mathrm{m}(\mathrm{j})} \,\left(\frac{\partial \mathrm{V}_{1}^{*}(\ell)}{\partial \mathrm{S}_{1}^{*}(\mathrm{l})}\right)_{\mathrm{p}^{*}} \nonumber \]

    In the latter equation we identify \(\left(\frac{\partial \mathrm{V}_{1}^{*}(\ell)}{\partial \mathrm{p}}\right)_{\mathrm{s}^{*}(\ell)}\) and \(\left(\frac{\partial \mathrm{V}_{1}^{*}(\ell)}{\partial \mathrm{S}_{1}^{*}(1)}\right)_{\mathrm{p}^{*}}\) with, respectively, \(-\mathrm{V}_{1}^{*}(\ell) \, \kappa_{\mathrm{S} 1}^{*}(\ell)\) and \(\mathrm{T} \, \alpha_{\mathrm{p} 1}^{*}(\ell) / \sigma_{1}^{*}(\ell)\), which are thermodynamic properties of water (\(\ell\)). Here \(\sigma_{1}^{*}(\ell)\) is the heat capacitance (or heat capacity per unit volume) of water (\(\ell\)) Using the same calculus operation, the remaining partial differential is related to an isothermal property in equation (f).

    \[\left(\frac{\partial \mathrm{S}_{1}^{*}(\ell)}{\partial \mathrm{p}}\right)_{\mathrm{s}^{*}(\mathrm{aq}) ; \mathrm{m}(\mathrm{j})}=\left(\frac{\partial \mathrm{S}_{1}^{*}(\ell)}{\partial \mathrm{p}}\right)_{\mathrm{T}}+\left(\frac{\partial \mathrm{T}}{\partial \mathrm{p}}\right)_{\mathrm{S}(\mathrm{aq}) ; \mathrm{m}(\mathrm{j})} \,\left(\frac{\partial \mathrm{S}_{1}^{*}(\ell)}{\partial \mathrm{T}}\right)_{\mathrm{p}^{*}} \nonumber \]

    Since \(\left(\frac{\partial \mathrm{V}_{1}^{*}(\ell)}{\partial \mathrm{p}}\right)_{\mathrm{T}}=-\mathrm{V}_{1}^{*}(\ell) \, \alpha_{\mathrm{pl}}^{*}(\ell),\left(\frac{\partial \mathrm{T}}{\partial \mathrm{p}}\right)_{\mathrm{S}(\mathrm{aq})) \mathrm{m}(\mathrm{j})}=\mathrm{T} \, \frac{\alpha_{\mathrm{p}}(\mathrm{aq})}{\sigma(\mathrm{aq})}\), and \(\left(\frac{\partial \mathrm{S}_{1}^{*}(\ell)}{\partial \mathrm{T}}\right)_{\mathrm{p}^{*}}=\frac{\mathrm{V}_{1}^{*}(\ell) \, \sigma_{1}^{*}(\ell)}{\mathrm{T}}\), we combine these results with equation (f) to express equation (e) as equation (g).

    \[\begin{aligned}
    &\frac{1}{\mathrm{~V}_{1}^{*}(\ell)} \,\left(\frac{\partial \mathrm{V}_{1}^{*}(\ell)}{\partial \mathrm{p}}\right)_{\mathrm{S}(\mathrm{aq}) ; \mathrm{m}(\mathrm{j})}= \\
    &-\kappa_{\mathrm{S} 1}^{*}(\ell)-\mathrm{T} \, \frac{\left[\alpha_{\mathrm{p} 1}^{*}(\ell)\right]^{2}}{\sigma_{1}^{*}(\ell)}+\mathrm{T} \, \frac{\alpha_{\mathrm{p} 1}^{*}(\ell) \, \alpha_{\mathrm{p}}(\mathrm{aq})}{\sigma(\mathrm{aq})}
    \end{aligned} \nonumber \]

    We return to equation (c). Using equation (a) for \(\mathrm{V}(\mathrm{aq})\), equation (c) yields equation (h).

    \[\begin{aligned}
    &-\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{p}}\right)_{\mathrm{s}(\mathrm{aq}) ; \mathrm{m}(\mathrm{j})}= \\
    &{\left[\left(\frac{\mathrm{n}_{1}}{\mathrm{n}_{\mathrm{j}}}\right) \, \mathrm{V}_{1}^{*}(\ell)+\phi\left(\mathrm{V}_{\mathrm{j}}\right)\right] \, \mathrm{K}_{\mathrm{s}}(\mathrm{aq})+\left(\frac{\mathrm{n}_{1}}{\mathrm{n}_{\mathrm{j}}}\right) \,\left(\frac{\partial \mathrm{V}_{1}^{*}(\ell)}{\partial \mathrm{p}}\right)_{\mathrm{s}(\mathrm{aq}) ; \mathrm{m}(\mathrm{j})}}
    \end{aligned} \nonumber \]

    We note that \(\frac{\mathrm{n}_{1}}{\mathrm{n}_{\mathrm{j}}}=\frac{1}{\mathrm{~m}_{\mathrm{j}} \, \mathrm{M}_{1}}\) And that density \(\rho_{1}^{*}(\ell)=\frac{\mathrm{M}_{1}}{\mathrm{~V}_{1}^{*}(\ell)}\). Then combining equations (g) and (h) leads to equation (i) after slight simplification.

    \[\begin{aligned}
    &-\left(\frac{\partial \phi\left(\mathrm{V}_{\mathrm{j}}\right)}{\partial \mathrm{p}}\right)_{\mathrm{s}(\mathrm{aq}) ; \mathrm{m}(\mathrm{j})}= \\
    &{\left[\kappa_{\mathrm{s}}(\mathrm{aq})-\kappa_{\mathrm{s} 1}^{*}(\ell)\right] \,\left[\mathrm{m}_{\mathrm{j}} \, \rho_{1}^{*}(\ell)\right]^{-1}+\kappa_{\mathrm{s}}(\mathrm{aq}) \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)} \\
    &+\left[\mathrm{m}_{\mathrm{j}} \, \rho_{1}^{*}(\ell)\right]^{-1} \, \mathrm{T} \, \alpha_{\mathrm{p} 1}^{*}(\ell) \,\left[\frac{\alpha_{\mathrm{p}}(\mathrm{aq})}{\sigma(\mathrm{aq})}-\frac{\alpha_{\mathrm{p} 1}^{*}(\ell)}{\sigma_{1}^{*}(\ell)}\right]
    \end{aligned} \nonumber \]

    An equivalent derivation of equation (i) has been given [1].

    Footnotes

    [1] M. J. Blandamer, J. Chem. Soc., Faraday Trans., 1998, 94, 1057.


    This page titled 1.7.11: Compression- Isentropic- Apparent Molar Volume is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.