Skip to main content
Chemistry LibreTexts

1.7.9: Compressions- Isentropic and Isothermal- Solutions- Approximate Limiting Estimates

  • Page ID
    374151
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The Newton Laplace Equation relates the speed of sound \(\mathrm{u}\) in an aqueous solution, density \(\rho(\mathrm{aq})\) and isentropic compressibility \(\kappa_{\mathrm{S}}(\mathrm{aq})\); equation (a).

    \[\mathrm{u}^{2}=\left[\kappa_{\mathrm{s}}(\mathrm{aq}) \, \rho(\mathrm{aq})\right]^{-1} \nonumber \]

    The differential dependence of sound velocity \(\mathrm{u}\) on \(\kappa_{\mathrm{S}}(\mathrm{aq})\) and \(\rho(\mathrm{aq})\) is given by equation (b).

    \[\begin{aligned}
    &2 \, u(a q) \, d u(a q)= \\
    &\quad-\frac{1}{\left[\kappa_{\mathrm{s}}(a q)\right]^{2} \, \rho(a q)} \, d \kappa_{s}(a q)-\frac{1}{\left.\kappa_{s}(a q)\right] \,[\rho(a q)]^{2}} \, d \rho(a q)
    \end{aligned} \nonumber \]

    We divide equation (b) by equation (a).

    \[2 \, \frac{\mathrm{du}(\mathrm{aq})}{\mathrm{u}(\mathrm{aq})}=-\frac{\mathrm{d} \kappa_{\mathrm{s}}(\mathrm{aq})}{\kappa_{\mathrm{s}}(\mathrm{aq})}-\frac{\mathrm{d} \rho(\mathrm{aq})}{\rho(\mathrm{aq})} \nonumber \]

    We explore three approaches based on equation (c)

    Analysis I

    Two extra-thermodynamic assumptions are made.

    1. Sound velocity \(\mathrm{u}(\mathrm{aq})\) is a linear function of solute concentration, \(\mathrm{c}_{j}\).

      \[\text { Thus[1] } \quad \mathrm{u}(\mathrm{aq})=\mathrm{u}_{1}^{*}(\ell)+\mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}} \nonumber \]

      \[\text { By definition, } \quad \mathrm{du}(\mathrm{aq})=\mathrm{u}(\mathrm{aq})-\mathrm{u}_{1}^{*}(\ell)=\mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}} \nonumber \]

    2. Density \(\rho(\mathrm{aq})\) is a linear function of concentration \(\mathrm{c}_{j}\).

      \[\text { Thus[1] } \quad \rho(\mathrm{aq})=\rho_{1}^{*}(\ell)+\mathrm{A}_{\rho} \, \mathrm{c}_{\mathrm{j}} \nonumber \]

      \[2 \, \frac{\mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}}}{\mathrm{u}(\mathrm{aq})}=-\frac{\mathrm{d} \kappa_{\mathrm{S}}(\mathrm{aq})}{\mathrm{K}_{\mathrm{s}}(\mathrm{aq})}-\frac{\mathrm{A}_{\mathrm{\rho}} \, \mathrm{c}_{\mathrm{j}}}{\rho(\mathrm{aq})} \nonumber \]

      \[\frac{\mathrm{d} \kappa_{\mathrm{S}}(\mathrm{aq})}{\kappa_{\mathrm{S}}(\mathrm{aq})}=-2 \, \frac{\mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}}}{\mathrm{u}(\mathrm{aq})}-\frac{\mathrm{A}_{\rho} \, \mathrm{c}_{\mathrm{j}}}{\rho(\mathrm{aq})} \nonumber \]

    In principle the change in \(\kappa_{\mathrm{S}}(\mathrm{aq})\) resulting from addition of a solute \(j\) to form a solution concentration \(\mathrm{c}_{j}\) can be obtained from the experimentally determined parameters \(\mathrm{A}_{\rho}\) and \(\mathrm{A}_{\mathrm{u}}\).

    Analysis II

    Another approach expresses the two dependences using a general polynomial in \(\mathrm{c}_{j}\).

    \[\text { By definition, } \quad \mathrm{A}_{\mathrm{u}}^{\infty}=\operatorname{limit}\left(\mathrm{c}_{\mathrm{j}} \rightarrow 0\right)\left(\frac{\partial \mathrm{u}(\mathrm{aq})}{\partial \mathrm{c}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}} \nonumber \]

    \[\text { and } \mathrm{A}_{\rho}^{\infty}=\operatorname{limit}\left(\mathrm{c}_{\mathrm{j}} \rightarrow 0\right)\left(\frac{\partial \rho(\mathrm{aq})}{\partial \mathrm{c}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}} \nonumber \]

    The assumption is made that both \(\mathrm{A}_{\mathrm{u}}^{\infty}\) and \(\mathrm{A}_{\rho}^{\infty}\) are finite.

    \[\text { Similarly } \operatorname{limit}\left(\mathrm{c}_{\mathrm{j}} \rightarrow 0\right)\left(\frac{\kappa_{\mathrm{s}}(\mathrm{aq})-\kappa_{\mathrm{S}}^{*}(\ell)}{\mathrm{c}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}}=\left(\frac{\partial \kappa_{\mathrm{S}}(\mathrm{aq})}{\partial \mathrm{c}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}}^{\infty} \nonumber \]

    Analysis III

    The procedures described above are incorporated into the following equation for \(\phi\left(\mathrm{K}_{\mathrm{sj}} ; \mathrm{def}\right)\).

    \[\text { Thus } \phi\left(\mathrm{K}_{\mathrm{s} j} ; \text { def }\right)=\left[\mathrm{c}_{\mathrm{j}}\right]^{-1} \,\left[\kappa_{\mathrm{s}}(\mathrm{aq})-\kappa_{\mathrm{s} 1}^{*}(\ell)\right]+\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \kappa_{\mathrm{s} 1}^{*}(\ell) \nonumber \]

    Hence using equation (h) with \(\mathrm{d}_{\mathrm{s}}(\mathrm{aq})=\kappa_{\mathrm{s}}(\mathrm{aq})-\kappa_{\mathrm{s} 1}^{*}(\ell)\)

    \[\begin{aligned}
    &\phi\left(\mathrm{K}_{\mathrm{Sj}} ; \text { def }\right)= \\
    &\qquad\left[\kappa_{\mathrm{S}}(\mathrm{aq}) / \mathrm{c}_{\mathrm{j}}\right] \,\left[-\frac{2 \, \mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}}}{\mathrm{u}(\mathrm{aq})}-\frac{\mathrm{A}_{\rho} \, \mathrm{c}_{\mathrm{j}}}{\rho(\mathrm{aq})}\right]+\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \mathrm{K}_{\mathrm{S} 1}^{\mathrm{*}}(\ell)
    \end{aligned} \nonumber \]

    If we assume that \(\kappa_{\mathrm{S}}(\mathrm{aq})\) is close to \(\kappa_{\mathrm{S} 1}^{*}(\ell)\), then [2]

    \[\phi\left(\mathrm{K}_{\mathrm{Sj}_{j}} ; \operatorname{def}\right)=\kappa_{\mathrm{s}}(\mathrm{aq}) \,\left[-\frac{2 \, \mathrm{A}_{\mathrm{u}}}{\mathrm{u}(\mathrm{aq})}-\frac{\mathrm{A}_{\rho}}{\rho(\mathrm{aq})}+\phi\left(\mathrm{V}_{\mathrm{j}}\right)\right] \nonumber \]

    Equation (n) is complicated in the sense that the properties \(\kappa_{\mathrm{S}}(\mathrm{aq})\), \(\mathrm{u}(\mathrm{aq})\), \(\rho(\mathrm{aq})\) and \(\phi\left(\mathrm{V}_{\mathrm{j}}\right)\) depend on concentration \(\mathrm{c}_{j}\). With respect to \(\phi\left(\mathrm{V}_{\mathrm{j}}\right)\), the following equation is exact.

    \[\phi\left(\mathrm{V}_{\mathrm{j}}\right)=\left[\mathrm{c}_{\mathrm{j}} \, \rho_{1}^{*}(\ell)\right]^{-1} \,\left[\rho_{1}^{*}(\ell)-\rho(\mathrm{aq})\right]+\mathrm{M}_{\mathrm{j}} / \rho_{1}^{*}(\ell) \nonumber \]

    \[\text { Using equation }(f), \phi\left(V_{j}\right)=-\frac{A_{\rho}}{\rho_{1}^{*}(\ell)}+\frac{M_{j}}{\rho_{1}^{*}(\ell)} \nonumber \]

    \[\text { Or, }-\frac{A_{\rho}}{\rho_{1}^{*}(\ell)}=\phi\left(V_{j}\right)-\frac{M_{j}}{\rho_{1}^{*}(\ell)} \nonumber \]

    Equation (q) is multiplied by the ratio, \(\rho_{1}^{*}(\ell) / \rho(\mathrm{aq})\).

    \[\text { Thus }-\frac{\mathrm{A}_{\rho}}{\rho(\mathrm{aq})}=\frac{\rho_{1}^{*}(\ell)}{\rho(\mathrm{aq})} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)-\frac{\mathrm{M}_{\mathrm{j}}}{\rho(\mathrm{aq})} \nonumber \]

    Combination of equations (n) and (r) yields equation (s).

    \[\begin{aligned}
    &\phi\left(\mathrm{K}_{\mathrm{Sj}} ; \mathrm{def}\right)= \\
    &\kappa_{\mathrm{s}} \,\left[-\frac{2 \, \mathrm{A}_{\mathrm{u}}}{\mathrm{u}(\mathrm{aq})}+\frac{\rho_{1}^{*}(\ell)}{\rho(\mathrm{aq})} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)-\frac{\mathrm{M}_{\mathrm{j}}}{\rho(\mathrm{aq})}+\phi\left(\mathrm{V}_{\mathrm{j}}\right)\right]
    \end{aligned} \nonumber \]

    The argument is advanced that \(\phi\left(\mathrm{K}_{\mathrm{Sj}} ; \mathrm{def}\right)\) can be meaningfully extrapolated to infinite dilution.

    \[\operatorname{limit}\left(c_{j} \rightarrow 0\right) \phi\left(K_{\mathrm{Sj}_{j}} ; \operatorname{def}\right)=\phi\left(\mathrm{K}_{\mathrm{sj}} ; \operatorname{def}\right)^{\infty} \nonumber \]

    In the same limit \(\rho_{1}^{*}(\ell) / \rho(\mathrm{aq})=1.0\) and \(\mathrm{K}_{\mathrm{S}}(\mathrm{aq})=\mathrm{K}_{\mathrm{S}}^{*}(\ell)\).

    \[\phi\left(\mathrm{K}_{\mathrm{S}_{j}} ; \operatorname{def}\right)^{\infty}=\kappa_{\mathrm{s} 1}^{*}(\ell) \,\left[2 \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty}-\frac{\mathrm{M}_{\mathrm{j}}}{\rho_{1}^{*}(\ell)}-\frac{2 \, \mathrm{A}_{\mathrm{u}}}{\mathrm{u}_{1}^{*}(\ell)}\right] \nonumber \]

    \[\text { But from equation }(\mathrm{d}), \mathrm{A}_{\mathrm{u}}=\left[\mathrm{u}(\mathrm{aq})-\mathrm{u}_{1}^{*}(\ell)\right] / \mathrm{c}_{\mathrm{j}} \nonumber \]

    \[\phi\left(\mathrm{K}_{\mathrm{sj}} ; \operatorname{def}\right)^{\infty}=\kappa_{\mathrm{sl}}^{*}(\ell) \,\left[2 \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty}-2 \, \mathrm{U}-\frac{\mathrm{M}_{\mathrm{j}}}{\rho_{1}^{*}(\ell)}\right] \nonumber \]

    where (cf. equation (v)),

    \[\mathrm{U}=\left[\mathrm{u}(\mathrm{aq})-\mathrm{u}_{1}^{*}(\ell)\right] /\left[\mathrm{u}_{1}^{*}(\ell) \, \mathrm{c}_{\mathrm{j}}\right] \nonumber \]

    The symbol \(\mathrm{U}\) identifies the relative molar increment of the speed of sound [3-9]. Equation (w) shows \(\phi\left(K_{S_{j}} ; \operatorname{def}\right)^{\infty}\) is obtained from \(\phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty}\) and the speed of sound in a solution concentration \(\mathrm{c}_{j}\).

    \[\text { In this approach we assume that }\left(\frac{\partial \mathrm{u}}{\partial \mathrm{c}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}}=\frac{\mathrm{u}(\mathrm{aq})-\mathrm{u}_{1}^{*}(\ell)}{\mathrm{c}_{\mathrm{j}}} \nonumber \]

    \[\text { Then, } U=\frac{1}{\mathrm{u}_{1}^{*}(\ell)} \,\left(\frac{\mathrm{du}(\mathrm{aq})}{\mathrm{dc}_{\mathrm{j}}}\right) \nonumber \]

    However \(\left(\frac{\mathrm{du}(\mathrm{aq})}{\mathrm{dc}}\right)\) and similarly \(\left(\frac{\mathrm{du}(\mathrm{aq})}{\mathrm{dm}_{\mathrm{j}}}\right)\) are obtained using experimental results for real concentrations. Hence the estimated \(\phi\left(\mathrm{K}_{\mathrm{Sj}} ; \operatorname{def}\right)^{\infty}\) is likely to be poor.

    Analysis IV

    The apparent molar isothermal compression of solute \(j\) is related to the concentration \(\mathrm{c}_{j}\) using the following exact equation.

    \[\phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)=\left[\mathrm{c}_{\mathrm{j}}\right]^{-1} \,\left[\kappa_{\mathrm{T}}(\mathrm{aq})-\kappa_{\mathrm{T} 1}^{*}(\ell)\right]+\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \nonumber \]

    \[\text { By definition. } \quad \delta(a q)=\kappa_{\mathrm{T}}(\mathrm{aq})-\kappa_{\mathrm{S}}(\mathrm{aq}) \nonumber \]

    \[\text { and } \delta_{1}^{*}(1)=\kappa_{\mathrm{T} 1}^{*}(\ell)-\kappa_{\mathrm{S} 1}^{*}(\ell) \nonumber \]

    \[\text { For an aqueous solution, } \kappa_{\mathrm{T}}(\mathrm{aq})=\delta(\mathrm{aq})+\kappa_{\mathrm{s}}(\mathrm{aq}) \nonumber \]

    According to the Newton-Laplace Equation.

    \[[u(\mathrm{aq})]^{2}=\left[\kappa_{\mathrm{s}}(\mathrm{aq}) \, \rho(\mathrm{aq})\right]^{-1} \nonumber \]

    \[\text { From equation }(\mathrm{zd}), \kappa_{\mathrm{T}}(\mathrm{aq})=\delta(\mathrm{aq})+\left\{[\mathrm{u}(\mathrm{aq})]^{2} \, \rho(\mathrm{aq})\right\}^{-1} \nonumber \]

    At this stage, assumptions are made concerning the dependences of \(\kappa_{\mathrm{T}}(\mathrm{aq})\) and \(\delta(\mathrm{aq})\) on concentration \(\mathrm{c}_{j}\).

    \[\text { Thus } \quad \kappa_{\mathrm{T}}(\mathrm{aq})=\kappa_{\mathrm{T} 1}^{*}(\ell)+\mathrm{A}_{\mathrm{KT}} \, \mathrm{c}_{\mathrm{j}} \nonumber \]

    \[\text { and } \quad \delta(\mathrm{aq})=\delta_{1}^{*}(\ell)+\mathrm{A}_{\delta} \, \mathrm{c}_{\mathrm{j}} \nonumber \]

    Using equations (d), (f) and (zf),

    \[\begin{aligned}
    \kappa_{\mathrm{Tl}}^{*}(\ell)+\mathrm{A}_{\kappa \mathrm{T}} \, \mathrm{c}_{\mathrm{j}}=& \delta_{1}^{*}(\ell)+\mathrm{A}_{\delta} \, \mathrm{c}_{\mathrm{j}} \\
    &+\frac{1}{\left\{\mathrm{u}_{1}^{*}(\ell)+\mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}}\right\}^{2} \,\left\{\rho_{1}^{*}(\ell)+\mathrm{A}_{\rho} \, \mathrm{c}_{\mathrm{j}}\right\}}
    \end{aligned} \nonumber \]

    Or,

    \[\begin{aligned}
    &\kappa_{\mathrm{T} 1}^{*}(\ell)+\mathrm{A}_{\kappa \mathrm{T}} \, \mathrm{c}_{\mathrm{j}}=\delta_{1}^{*}(\ell)+\mathrm{A}_{\delta} \, \mathrm{c}_{\mathrm{j}} \\
    &+\frac{1}{\left[\mathrm{u}_{1}^{*}(\ell)\right]^{2} \,\left\{1+\mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}} / \mathrm{u}_{1}^{*}(\ell)\right\}^{2} \, \rho_{1}^{*}(\ell) \,\left\{1+\mathrm{A}_{\rho} \, \mathrm{c}_{\mathrm{j}} / \rho_{1}^{*}(\ell)\right\}}
    \end{aligned} \nonumber \]

    Assuming \(\mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}} / \mathrm{u}_{1}^{*}(\ell)<<1\) and \(A_{\rho} \, c_{j} / \rho_{1}^{*}(\ell)<<1\),

    \[\begin{aligned}
    &\kappa_{\mathrm{T} 1}^{*}(\ell)+\mathrm{A}_{\mathrm{kT}} \, \mathrm{c}_{\mathrm{j}}=\delta_{1}^{*}(\ell)+\mathrm{A}_{\delta} \, \mathrm{c}_{\mathrm{j}} \\
    &+\frac{1}{\left[\mathrm{u}_{1}^{*}(\ell)\right]^{2} \, \rho_{1}^{*}(\ell)} \,\left[1-\frac{2 \, \mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}}}{\mathrm{u}_{1}^{*}(\ell)}\right] \,\left[1-\frac{\mathrm{A}_{\rho} \, \mathrm{c}_{\mathrm{j}}}{\rho_{1}^{*}(\ell)}\right]
    \end{aligned} \nonumber \]

    \[\text { We assume that }\left[\frac{2 \, \mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}}}{\mathrm{u}_{1}^{*}(\ell)}\right] \,\left[\frac{\mathrm{A}_{\rho} \, \mathrm{c}_{\mathrm{j}}}{\rho_{1}^{*}(\ell)}\right]<<1 \nonumber \]

    \[\begin{aligned}
    &\text { Therefore, } \\
    &\kappa_{\mathrm{T} 1}^{*}(\ell)+\mathrm{A}_{\mathrm{KT}} \, \mathrm{c}_{\mathrm{j}}=\delta_{1}^{*}(\ell)+\mathrm{A}_{\delta} \, \mathrm{c}_{\mathrm{j}} \\
    &+\frac{1}{\left[\mathrm{u}_{1}^{*}(\ell)\right]^{2} \, \rho_{1}^{*}(\ell)} \,\left[1-\frac{2 \, \mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}}}{\mathrm{u}_{1}^{*}(\ell)}-\frac{\mathrm{A}_{\rho} \, \mathrm{c}_{\mathrm{j}}}{\rho_{1}^{*}(\ell)}\right]
    \end{aligned} \nonumber \]

    \[\text { But } \kappa_{\mathrm{s} 1}^{*}(\ell)=\left\{\left[u_{1}^{*}(\ell)\right]^{2} \, \rho_{1}^{*}(\ell)\right\}^{-1} \nonumber \]

    \[\text { and } \kappa_{\mathrm{T} 1}^{*}(\ell)=\delta_{1}^{*}(\ell)+\kappa_{\mathrm{S} 1}^{*}(\ell) \nonumber \]

    Then,

    \[\begin{aligned}
    &\delta_{1}^{*}(\ell)+\kappa_{\mathrm{S} 1}^{*}(\ell)+\mathrm{A}_{\mathrm{KT}} \, \mathrm{c}_{\mathrm{j}}=\delta_{1}^{*}(\ell)+\mathrm{A}_{\delta} \, \mathrm{c}_{\mathrm{j}} \\
    &+\kappa_{\mathrm{Sl}}^{*}(\ell) \,\left[1-\frac{2 \, \mathrm{A}_{\mathrm{u}} \, \mathrm{c}_{\mathrm{j}}}{\mathrm{u}_{1}^{*}(\ell)}-\frac{\mathrm{A}_{\rho} \, \mathrm{c}_{\mathrm{j}}}{\rho_{1}^{*}(\ell)}\right]
    \end{aligned} \nonumber \]

    \[\text { Or } \mathrm{A}_{\mathrm{K}}=\mathrm{A}_{\delta}-\kappa_{\mathrm{S} 1}^{*}(\ell) \,\left[\frac{2 \, \mathrm{A}_{\mathrm{u}}}{\mathrm{u}_{1}^{*}(\ell)}+\frac{\mathrm{A}_{\rho}}{\rho_{1}^{*}(\ell)}\right] \nonumber \]

    From equations (za) and (zg),

    \[\phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)=\mathrm{A}_{\mathrm{KT}}+\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \kappa_{\mathrm{Tl}}^{*}(\ell) \nonumber \]

    Equations (zq) and (zr) yield equation (as),

    \[\phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)=\mathrm{A}_{\delta}-\kappa_{\mathrm{S} 1}^{*}(\ell) \,\left[\frac{2 \, \mathrm{A}_{\mathrm{u}}}{\mathrm{u}_{1}^{*}(\ell)}+\frac{\mathrm{A}_{\rho}}{\rho_{1}^{*}(\ell)}\right]+\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \nonumber \]

    Or, using equation (q)

    \[\begin{aligned}
    \phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)=\mathrm{A}_{\delta}-\mathrm{K}_{\mathrm{S} 1}^{*}(\ell) \,[&\left.\frac{2 \, \mathrm{A}_{\mathrm{u}}}{\mathrm{u}_{1}^{*}(\ell)}+\frac{\mathrm{M}_{\mathrm{j}}}{\rho_{1}^{*}(\ell)}-\phi\left(\mathrm{V}_{\mathrm{j}}\right)\right] \\
    &+\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \kappa_{\mathrm{T} 1}^{*}(\ell)
    \end{aligned} \nonumber \]

    Using equation (zc),

    \[\begin{aligned}
    \phi\left(\mathrm{K}_{\mathrm{Tj}_{\mathrm{j}}}\right)=& \mathrm{A}_{\delta}-\kappa_{\mathrm{S} 1}^{*}(\ell) \,\left[\frac{2 \, \mathrm{A}_{\mathrm{u}}}{\mathrm{u}_{1}^{*}(\ell)}+\frac{\mathrm{M}_{\mathrm{j}}}{\rho_{1}^{*}(\ell)}-\phi\left(\mathrm{V}_{\mathrm{j}}\right)\right] \\
    &+\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \delta_{1}^{*}(\ell)+\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \kappa_{\mathrm{S} 1}^{*}(\ell)
    \end{aligned} \nonumber \]

    Or,

    \[\begin{aligned}
    &\phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)=\mathrm{A}_{\delta}+\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \delta_{1}^{*}(\ell) \\
    &+\kappa_{\mathrm{Sl}}^{*}(\ell) \,\left[2 \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)-\frac{\mathrm{M}_{\mathrm{j}}}{\left.\rho_{1}^{*} \ell\right)}-\frac{2 \, \mathrm{A}_{u}}{\left.\mathrm{u}_{1}^{*} \ell\right)}\right]
    \end{aligned} \nonumber \]

    The latter is the Owen-Simons Equation[4] which takes the following form in the limit of infinite dilution.

    \[\begin{aligned}
    \phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)^{\infty}=\left[\mathrm{A}_{\delta}\right.&\left.+\phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty} \, \delta_{1}^{*}(\ell)\right] \\
    &+\kappa_{\mathrm{Sl}}^{*}(\ell) \,\left[2 \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty}-\frac{\mathrm{M}_{\mathrm{j}}}{\rho_{1}^{*}(\ell)}-\frac{2 \, \mathrm{A}_{\mathrm{u}}}{\mathrm{u}_{1}^{*}(\ell)}\right]
    \end{aligned} \nonumber \]

    The term \(\left[\mathrm{A}_{\delta}+\phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty} \, \delta_{1}^{*}(\ell)\right]\) is not negligibly small. Using equation (u), equation (zw) takes the following form,

    \[\phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)^{\infty}=\left[\mathrm{A}_{\delta}+\phi\left(\mathrm{V}_{\mathrm{j}}\right)^{\infty} \, \delta_{1}^{*}(\ell)\right]+\phi\left(\mathrm{K}_{\mathrm{Sj}}\right)^{\infty} \nonumber \]

    Clearly the approximation which sets \(\phi\left(\mathrm{K}_{\mathrm{Tj}}\right)^{\infty}\) equal to \(\phi\left(\mathrm{K}_{\mathrm{Sj}}\right)^{\infty}\) is poor although often made. In fact Hedwig and Hoiland [10] show that for N-acetylamino acids in aqueous solution at \(298.15 \mathrm{~K} \mathrm{} \phi\left(\mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\right)^{\infty}\) and \(\phi\left(\mathrm{K}_{\mathrm{Sj}}\right)^{\infty}\) can have different signs, offering convincing evidence that the assumption is untenable.

    Footnotes

    [1] \(\begin{aligned}
    &A_{u}=\left[\frac{m}{s}\right] \,\left[\frac{m^{3}}{m o l}\right]=\left[m^{4} \mathrm{~s}^{-1} \mathrm{~mol}^{-1}\right] \\
    &A_{\rho}=\left[\frac{k g}{m^{3}}\right] \,\left[\frac{m^{3}}{m o l}\right]=\left[k g \mathrm{~mol}^{-1}\right]
    \end{aligned}\)

    [2] \(\begin{aligned}
    &2 \, \frac{\mathrm{A}_{\mathrm{u}}}{\mathrm{u}} \, \mathrm{K}_{\mathrm{S}}(\mathrm{aq})=[1] \, \frac{1}{\left[\mathrm{~m} \mathrm{~s}^{-1}\right]} \,\left[\mathrm{m}^{4} \mathrm{~s}^{-1} \mathrm{~mol}^{-1}\right] \, \frac{1}{\left[\mathrm{~N} \mathrm{~m}^{-2}\right]}=\frac{\left[\mathrm{m}^{3} \mathrm{~mol}^{-1}\right]}{\left[\mathrm{N} \mathrm{m}^{-2}\right]} \\
    &\frac{\mathrm{A}_{\rho}}{\rho} \, \kappa_{\mathrm{S}}(\mathrm{aq})=\frac{\left[\mathrm{kg} \mathrm{m}^{-3}\right]}{\left[\mathrm{mol} \mathrm{m}^{-3}\right]} \, \frac{1}{\left.\mathrm{~kg} \mathrm{~m}^{-3}\right]} \, \frac{1}{\left[\mathrm{~N} \mathrm{~m}^{-2}\right]}=\frac{\left[\mathrm{m}^{3} \mathrm{~mol}^{-1}\right]}{\left[\mathrm{Nm}^{-2}\right]} \\
    &\phi\left(\mathrm{V}_{\mathrm{j}}\right) \, \kappa_{\mathrm{s}}(\mathrm{aq})=\left[\mathrm{m}^{3} \mathrm{~mol}^{-1}\right] \, \frac{1}{\left[\mathrm{~N} \mathrm{~m}^{-2}\right]}=\frac{\left[\mathrm{m}^{3} \mathrm{~mol}^{-1}\right]}{\left[\mathrm{N} \mathrm{m}^{-2}\right]}
    \end{aligned}\)

    [3] S. Barnatt, J. Chem. Phys.,1952,20,278.

    [4] B. B. Owen and H. L. Simons, J. Phys.Chem.,1957,61,479.

    [5] H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold, New York, 1958, 3rd. edn., section 8.7.

    [6] D. P. Kharakov, J. Phys.Chem.,1991,95,5634.

    [7] T. V. Chalikian, A. P .Sarvazyan, T. Funck, C. A.Cain, and K. J. Breslauer, J. Phys.Chem.,1994,98,321.

    [8] T. V. Chalikian, A.P.Sarvazyan and K. J. Breslauer, Biophys. Chem.,1994,51,89.

    [9] P. Bernal and J. McCluan, J Solution Chem.,2001,30,119.

    [10] G. R. Hedwig and H. Hoiland, Phys. Chem. Chem. Phys.,2004,6,2440.


    This page titled 1.7.9: Compressions- Isentropic and Isothermal- Solutions- Approximate Limiting Estimates is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.