Skip to main content
Chemistry LibreTexts

6.1: Entropy

  • Page ID
    414055
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Let’s return to the definition of efficiency of a Carnot cycle and bring together eqs. 5.3.2 and 5.3.3:

    \[ \varepsilon = 1+\dfrac{Q_3}{Q_1} = 1-\dfrac{T_l}{T_h}. \nonumber \]

    Simplifying this equality, we obtain:

    \[ \dfrac{Q_3}{T_l} = -\dfrac{Q_1}{T_h}, \label{6.1.2} \]

    or alternatively:

    \[ \dfrac{Q_3}{T_l} + \dfrac{Q_1}{T_h} = 0. \label{6.1.3} \]

    The left hand side of Equation \ref{6.1.3} contains the sum of two quantities around the Carnot cycle, each calculated as \(\dfrac{Q_{\mathrm{REV}}}{T}\), with \(Q_{\mathrm{REV}}\) being the heat exchanged at reversible conditions (recall that according to Definition: Carnot Cycle each transformation in a Carnot cycle is reversible). Equation \ref{6.1.2} can be generalized to a sequence of connected Carnot cycles joining more than two isotherms by taking the summation across different temperatures:

    clipboard_e83f8752a9761f453c41761b2f942ddd9.png
    Figure \(\PageIndex{1}\)

    \[ \sum_i \dfrac{Q_{\mathrm{REV}}}{T_i} = 0, \label{6.1.4} \]

    where the summation happens across a sequence of Carnot cycles that connects different temperatures. Eqs. \label{6.1.3} and \ref{6.1.4} show that for a Carnot cycle—or a series of connected Carnot cycles—there exists a conserved quantity obtained by dividing the heat associated with each reversible stage and the temperature at which such heat is exchanged. If a quantity is conserved around a cycle, it must be independent on the path, and therefore it is a state function. Looking at similar equations, Clausius introduced in 1865 a new state function in thermodynamics, which he decided to call entropy and indicate with the letter \(S\):

    Definition: Entropy

    \[ S = \dfrac{Q_{\mathrm{REV}}}{T}. \nonumber \]

    We can use the new state function to generalize Equation \ref{6.1.4} to any reversible cycle in a \(PV\)-diagram by using the rules of calculus. First, we will slice \(S\) into an infinitesimal quantity:

    \[ dS = \dfrac{đQ_{\mathrm{REV}}}{T}, \nonumber \]

    then we can extend the summation across temperatures of Equation \ref{6.1.4} to a sum over infinitesimal quantities—that is the integral—around the cycle:

    \[ \oint dS = \oint \dfrac{đQ_{\mathrm{REV}}}{T} = 0. \nonumber \]


    This page titled 6.1: Entropy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?