Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • Number of Print Columns
    • PrintOptions
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 100 results
  • https://chem.libretexts.org/Courses/Westminster_College/CHE_180_-_Inorganic_Chemistry/06%3A_Chapter_6_-_Inorganic_Thermodynamics/6.3%3A_Entropy
    Entropy (S) is a state function that can be related to the number of microstates for a system (the number of ways the system can be arranged) and to the ratio of reversible heat to kelvin temperature....Entropy (S) is a state function that can be related to the number of microstates for a system (the number of ways the system can be arranged) and to the ratio of reversible heat to kelvin temperature. It may be interpreted as a measure of the dispersal or distribution of matter and/or energy in a system, and it is often described as representing the “disorder” of the system. For a given substance, Ssolid<Sliquid<Sgas in a given physical state at a given temperature.
  • https://chem.libretexts.org/Courses/Millersville_University/CHEM_341-_Physical_Chemistry_I/05%3A_The_Second_Law/5.05%3A_Entropy
    In addition to learning that the efficiency of a Carnot engine depends only on the high and low temperatures, more interesting things can be derived through the exploration of this system.
  • https://chem.libretexts.org/Courses/CSU_San_Bernardino/CHEM_2200%3A_General_Chemistry_II_(Mink)/16%3A_Thermodynamics/16.03%3A_Entropy
    Entropy (S) is a state function that can be related to the number of microstates for a system (the number of ways the system can be arranged) and to the ratio of reversible heat to Kelvin temperature....Entropy (S) is a state function that can be related to the number of microstates for a system (the number of ways the system can be arranged) and to the ratio of reversible heat to Kelvin temperature. It may be interpreted as a measure of the dispersal or distribution of matter and/or energy in a system, and it is often described as representing the “disorder” of the system. For a given substance, Ssolid<Sliquid<SgasSsolid<Sliquid<SgasS_{solid} < S_{liquid} < S_{gas} in a given physical state at
  • https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(Fleming)/05%3A_The_Second_Law/5.01%3A_Introduction_to_the_Second_Law
    The text discusses fundamental principles of thermodynamics as articulated by Rudolf Clausius???specifically, the conservation of energy and the increase of entropy. It delves into the second law of t...The text discusses fundamental principles of thermodynamics as articulated by Rudolf Clausius???specifically, the conservation of energy and the increase of entropy. It delves into the second law of thermodynamics, which introduces the concept of entropy and how it influences our perception of time and irreversible processes. The discussion includes spontaneous processes, which occur without external forces and may not be predicted solely by energy changes.
  • https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(Fleming)/05%3A_The_Second_Law/5.03%3A_Entropy
    The page discusses the Carnot engine and its relationship with temperature and efficiency. It explains how the total heat transferred in the cycle is derived, showing that heat (q) is not a state func...The page discusses the Carnot engine and its relationship with temperature and efficiency. It explains how the total heat transferred in the cycle is derived, showing that heat (q) is not a state function due to its net change around a closed cycle being non-zero. However, when considering the sum of q/T, it results in zero, which aligns with the behavior of a state function.
  • https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Thermodynamics/Energies_and_Potentials/Entropy/Microstates
    Dictionaries define “macro” as large and “micro” as very small but a macrostate and a microstate in thermodynamics aren't just definitions of big and little sizes of chemical systems. Instead, they ar...Dictionaries define “macro” as large and “micro” as very small but a macrostate and a microstate in thermodynamics aren't just definitions of big and little sizes of chemical systems. Instead, they are two very different ways of looking at a system. A microstate is one of the huge number of different accessible arrangements of the molecules' motional energy* for a particular macrostate.
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Inorganic_Chemistry_(LibreTexts)/08%3A_Chemistry_of_the_Main_Group_Elements/8.13%3A_The_Halogens/8.13.02%3A_Chemical_Properties_of_the_Halogens/8.13.2.07%3A_The_Acidity_of_the_Hydrogen_Halides
    This page discusses the acidity of the hydrogen halides: hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide. It begins by describing their physical properties and synthesis and...This page discusses the acidity of the hydrogen halides: hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide. It begins by describing their physical properties and synthesis and then explains what happens when they react with water to make acids such as hydrofluoric acid and hydrochloric acid.
  • https://chem.libretexts.org/Bookshelves/General_Chemistry/ChemPRIME_(Moore_et_al.)/16%3A_Entropy_and_Spontaneous_Reactions/16.13%3A_Including_the_Surroundings
    There are thus two entropy changes which we must take into account in deciding whether a reaction will be spontaneous or not: (1) the change in entropy of the system actually undergoing the chemical c...There are thus two entropy changes which we must take into account in deciding whether a reaction will be spontaneous or not: (1) the change in entropy of the system actually undergoing the chemical change, which we will indicate with the symbol ΔS sys ; and (2) the change in entropy of the surroundings, ΔS surr , which occurs as the surroundings absorb the heat energy liberated by an exothermic reaction or supply the heat energy absorbed by an endothermic reaction.
  • https://chem.libretexts.org/Courses/Louisville_Collegiate_School/General_Chemistry/LibreTexts_Louisville_Collegiate_School_Chapters_16%3A_Thermodynamics/LibreTexts%2F%2FLouisville_Collegiate_School%2F%2FChapters%2F%2F16%3A_Thermodynamics%2F%2F16.2%3A_Entropy
    Entropy (S) is a state function that can be related to the number of microstates for a system (the number of ways the system can be arranged) and to the ratio of reversible heat to kelvin temperature....Entropy (S) is a state function that can be related to the number of microstates for a system (the number of ways the system can be arranged) and to the ratio of reversible heat to kelvin temperature. It may be interpreted as a measure of the dispersal or distribution of matter and/or energy in a system, and it is often described as representing the “disorder” of the system. For a given substance, Ssolid<Sliquid<Sgas in a given physical state at a given temperature.
  • https://chem.libretexts.org/Bookshelves/General_Chemistry/Concept_Development_Studies_in_Chemistry_(Hutchinson)/17%3A_Equilibrium_and_the_Second_Law_of_Thermodynamics
    When a mixture of reactants and products is not at equilibrium, the reaction will occur spontaneously in one direction or the other until the reaction achieves equilibrium. What determines the directi...When a mixture of reactants and products is not at equilibrium, the reaction will occur spontaneously in one direction or the other until the reaction achieves equilibrium. What determines the direction of spontaneity? What is the driving force towards equilibrium? How does the system know that equilibrium has been achieved? Our goal will be to understand the driving forces behind spontaneous processes and the determination of the equilibrium point.
  • https://chem.libretexts.org/Courses/University_of_Minnesota_Rochester/genchem2/4%3A_Thermodynamics/4.6%3A_Entropy
    Entropy (S) is a state function that can be related to the number of microstates for a system (the number of ways the system can be arranged) and to the ratio of reversible heat to kelvin temperature....Entropy (S) is a state function that can be related to the number of microstates for a system (the number of ways the system can be arranged) and to the ratio of reversible heat to kelvin temperature. It may be interpreted as a measure of the dispersal or distribution of matter and/or energy in a system, and it is often described as representing the “disorder” of the system. For a given substance, Ssolid<Sliquid<Sgas in a given physical state at a given temperature.

Support Center

How can we help?