# 10.3: The Variation Theorem in Dirac Notation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

The recipe for calculating the expectation value for energy using a trial wave function is,

$\langle E \rangle = \langle \psi | \hat{H} | \psi \rangle \label{1}$

Now suppose the eigenvalues of $$\hat{H}$$ are denoted by $$|i \rangle$$. Then,

$\hat{H} |i \rangle = \varepsilon_{i} |i \rangle = |i \rangle \varepsilon _{i} \label{2}$

Next we write $$| \psi \rangle$$ as a superposition of the eigenfunctions $$|i \rangle$$,

$| \psi \rangle = \sum_{i} |i \rangle \langle I| \psi \rangle \nonumber$

and substitute it into Equation \ref{1}.

$\langle E \rangle = \sum_{i} \langle \psi | \hat{H} | i \rangle \langle i | \psi \rangle \nonumber$

Making use of Equation \ref{2} yields,

$\langle E \rangle = \sum_{i} \langle \psi |i \rangle \varepsilon_{i} \langle i | \psi \rangle \nonumber$

After rearrangement we have,

$\langle E \rangle = \sum_{i} \varepsilon_{i} | \langle i| \psi \rangle |^{2} \nonumber$

However, $$| \langle i | \psi \rangle |^{2}$$ is the probability that $$\varepsilon_{i}$$ will be observed, $$p_i$$.

$\langle E \rangle = \sum_{i} \varepsilon_{i} p_{i} \geq \varepsilon_{0} \nonumber$

Thus, the expectation value obtained using the trial wave function is an upper bound to the true energy. In other words, in valid quantum mechanical calculations you can't get a lower energy than the true energy.

This page titled 10.3: The Variation Theorem in Dirac Notation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.