Skip to main content
Chemistry LibreTexts

10.1: Trial Wavefunctions for Various Potentials

  • Page ID
    135894
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    This is list of functions and the potentials for which they would be suitable trial wave functions in a variation method calculation.

    \( \psi (x, \alpha) = 2 \cdot \alpha ^{ \frac{3}{2}} \cdot x \cdot exp(- \alpha \cdot x)\)

    \( \psi (x, \alpha) = ( \frac{ 128 \cdot \alpha ^{3}}{ \pi})^{ \frac{1}{4}} \cdot exp(- \alpha \cdot x^{2})\)

    • Particle in a gravitational field V(z) = mgz (z = 0 to ∞)
    • Particle confined by a linear potential V(x) = ax (x = 0 to ∞)
    • One-dimensional atoms and ions V(x) = -Z/x (x = 0 to ∞)
    • Particle in semi-infinite potential well V(x) = if[ x \( \leq a, 0, b\)] (x = 0 to ∞)
    • Particle in semi-harmonic potential well V(x) = kx2 (x = 0 to ∞)

    \( \psi (x, \alpha) = ( \frac{ 2 \cdot \alpha}{ \pi})^{ \frac{1}{4}} \cdot exp(- \alpha \cdot x^{2})\)

    • Quartic oscillator V(x) = bx4 (x = -∞ to ∞)
    • Particle in the finite one-dimensional potential well V(x) = if[(x \( \geq\) -1 \( \cdot\) (x \leq 1), 0, 2] (x = -∞ to ∞)
    • 1D Hydrogen atom ground state
    • Harmonic oscillator ground state
    • Particle in V(x) = | x | potential well

    \( \psi (x, \alpha ) = \sqrt{ \alpha} \cdot exp(- \alpha \cdot |x|)\)

    • This wavefunction is discontinuous at x = 0, so the following calculations must be made in momentum space
    • Dirac hydrogen atom V(x) = - \( \Delta\) (x)
    • Harmonic oscillator ground state
    • Particle in V(x) = | x | potential well
    • Quartic oscillator V(x) = bx4 (x = -∞ to ∞)

    \( \psi (x) = \sqrt{30} \cdot x \cdot (1-x)\)

    \( \Gamma (x) = \sqrt{105} \cdot x \cdot (1-x)^{2}\)

    \( \Theta (x) = \sqrt{105} \cdot x^{2} \cdot (1-x)\)

    • Particle in a one-dimensional, one-bohr box
    • Particle in a slanted one-dimensional box
    • Particle in a semi-infinite potential well (change 1 to variational parameter)
    • Particle in a gravitational field (change 1 to variational parameter)

    \( \Phi (r, a) = (a-r)\)

    \( \Phi (r, a) = (a - r)^{2}\)

    \( \Phi (r, a) = \frac{1}{ \sqrt{2 \cdot \pi \cdot a}} \cdot \frac{ \sin \frac{ \pi \cdot r}{a}}{r}\)

    • Particle in a infinite spherical potential well of radius a
    • Particle in a finite spherical potential well (treat a as a variational parameter)

    \( \psi (r, \beta) = ( \frac{2 \cdot \beta}{ \pi})^{ \frac{3}{4}} \cdot exp (- \beta \cdot r^{2})\)

    • Particle in a finite spherical potential well
    • Hydrogen atom ground state
    • Helium atom ground state

    \( \psi (r, \beta) = \sqrt{ \frac{3 \cdot \beta ^{3}}{ \pi ^{3}}} \cdot sech( \beta \cdot r)\)

    • Particle in a finite potential well
    • Hydrogen atom ground state
    • Helium atom ground state

    \( \psi (x, \beta) = \sqrt{ \frac{ \beta}{2}} \cdot sech( \beta \cdot x)\)

    • Harmonic oscillator
    • Quartic oscillator
    • Particle in a gravitational field
    • Particle in a finite potential well

    \( \psi ( \alpha, \beta) = \sqrt{ \frac{12 \alpha ^{3}}{ \pi}} \cdot x \cdot sech( \alpha \cdot x)\)

    • Particle in a semi-infinite potential well
    • Particle in a gravitational field
    • Particle in a linear potential well (same as above) V(x) = ax (x = 0 to ∞)
    • 1D hydrogen atom or one-electron ion

    Some finite potential energy wells.

    V(x) = if[(x \( \geq\) -1 \( \cdot\) (x \( \leq\) 1), 0, V0]

    V(x) = if[(x \( \geq\) -1 \( \cdot\) (x \( \leq\) 1), 0, |x| - 1]

    V(x) = if[(x \( \geq\) -1 \( \cdot\) (x \( \leq\) 1), 0, \( \sqrt{|x| - 1}\)]

    Some semi-infinite potential energy well.

    V(x) = if (x \( \leq\) a, 0, b)

    V(x) = if[(x \( \leq\) 2), 0, \( \frac{5}{x}\)]

    V(x) = if[(x \( \geq\) 2), 0, (x - 2)]

    V(x) = if[(x \( \leq\) 2), 0, \( \sqrt{x-2}\)]


    This page titled 10.1: Trial Wavefunctions for Various Potentials is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.