Skip to main content
Chemistry LibreTexts

7.10: Using the Trace Function to Calculate Expectation Values

  • Page ID
    138798
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Starting with the traditional expression for the calculation of the expectation value, the identity operator is inserted between the measurement operator and the ket containing the wave function. Rearranging terms gives the trace function operating on the product of the state's density operator and the measurement operator.

    \[ \begin{align*} \langle \psi | \hat{O} | \psi \rangle &= \sum_i \langle \psi | \hat{O} | i \rangle \langle i | \psi \rangle \\[4pt] &= \sum_i \langle i | \psi \rangle \langle \psi | \hat{O} | i \rangle \\[4pt] &= Trace \left( | \psi \rangle \langle \psi | \hat{O} \right) \end{align*} \]

    where

    \[ \sum_i | i \rangle \langle i | = identity \nonumber \]

    Next this transition is carried out in detail using matrix algebra.

    \[ \begin{pmatrix}
    a & b
    \end{pmatrix}\begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix}\begin{pmatrix}
    a\\
    b
    \end{pmatrix} = \begin{pmatrix}
    a & b
    \end{pmatrix}\begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix}\begin{pmatrix}
    1 & 0\\
    0 & 1
    \end{pmatrix}\begin{pmatrix}
    a\\
    b
    \end{pmatrix} = \begin{pmatrix}
    a & b
    \end{pmatrix}\begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \left[ \begin{pmatrix}
    1\\
    0
    \end{pmatrix}\begin{pmatrix}
    1 & 0
    \end{pmatrix} + \begin{pmatrix}
    0\\
    1
    \end{pmatrix}\begin{pmatrix}
    0 & 1
    \end{pmatrix} \right] \begin{pmatrix}
    a\\
    b
    \end{pmatrix} = 2ab \nonumber \]

    \[ \begin{pmatrix}
    a & b
    \end{pmatrix} \begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    1\\
    0
    \end{pmatrix}\begin{pmatrix}
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    a\\
    b
    \end{pmatrix} = \begin{pmatrix}
    a & b
    \end{pmatrix} \begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    0\\
    1
    \end{pmatrix}\begin{pmatrix}
    0 & 1
    \end{pmatrix}\begin{pmatrix}
    a\\
    b
    \end{pmatrix} = 2ab \nonumber \]

    \[ \begin{pmatrix}
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    a \\
    b
    \end{pmatrix} \begin{pmatrix}
    a & b
    \end{pmatrix}\begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    1\\
    0
    \end{pmatrix} + \begin{pmatrix}
    0 & 1
    \end{pmatrix} \begin{pmatrix}
    a\\
    b
    \end{pmatrix} \begin{pmatrix}
    a & b
    \end{pmatrix} \begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    0\\
    1
    \end{pmatrix} = 2ab \nonumber \]

    \[ \begin{pmatrix}
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    a^2 & ab \\
    ab & b^2
    \end{pmatrix} \begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    1\\
    0
    \end{pmatrix} + \begin{pmatrix}
    0 & 1
    \end{pmatrix} \begin{pmatrix}
    a^2 & ab\\
    ab & b^2
    \end{pmatrix} \begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    0\\
    1
    \end{pmatrix} = 2ab \nonumber \]

    \[ \begin{pmatrix}
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    ab & a^2 \\
    b^2 & ab
    \end{pmatrix} \begin{pmatrix}
    1\\
    0
    \end{pmatrix} + \begin{pmatrix}
    0 & 1
    \end{pmatrix} \begin{pmatrix}
    ab & a^2\\
    b^2 & ab
    \end{pmatrix} \begin{pmatrix}
    0\\
    1
    \end{pmatrix} = ab + ab = Trace \begin{pmatrix}
    ab & a^2 \\
    b^2 & ab\\
    \end{pmatrix} \nonumber \]

    \[ \begin{pmatrix}
    a & b
    \end{pmatrix} \begin{pmatrix}
    0 & 1 \\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    a\\
    b
    \end{pmatrix} \rightarrow 2ab ~~~ \begin{pmatrix}
    a & b
    \end{pmatrix} \begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    1 & 0\\
    0 & 1
    \end{pmatrix} \begin{pmatrix}
    a\\
    b
    \end{pmatrix} \rightarrow 2ab \nonumber \]

    \[ \begin{pmatrix}
    1\\
    0
    \end{pmatrix} \begin{pmatrix}
    1 & 0
    \end{pmatrix} + \begin{pmatrix}
    0\\
    1
    \end{pmatrix} \begin{pmatrix}
    0 & 1
    \end{pmatrix} \rightarrow \begin{pmatrix}
    1 & 0\\
    0 & 1
    \end{pmatrix} \nonumber \]

    \[ \begin{pmatrix}
    a & b
    \end{pmatrix} \begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    1\\
    0
    \end{pmatrix} \begin{pmatrix}
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    a\\
    b
    \end{pmatrix} + \begin{pmatrix}
    a & b
    \end{pmatrix} \begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    0 \\
    1
    \end{pmatrix} \begin{pmatrix}
    0 & 1 \end{pmatrix} \begin{pmatrix}
    a \\
    b\end{pmatrix} \rightarrow 2ab \nonumber \]

    \[ \begin{pmatrix}
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    a \\
    b
    \end{pmatrix} \begin{pmatrix}
    a & b
    \end{pmatrix}
    \begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    1\\
    0
    \end{pmatrix} + \begin{pmatrix}
    0 & 1
    \end{pmatrix} \begin{pmatrix}
    a\\
    b
    \end{pmatrix} \begin{pmatrix}
    a & b
    \end{pmatrix} \begin{pmatrix}
    0 & 1\\
    1 & 0
    \end{pmatrix} \begin{pmatrix}
    0 \\
    1
    \end{pmatrix} \rightarrow 2ab \nonumber \]

    \[ tr \left[ \begin{pmatrix}
    a \\
    b
    \end {pmatrix} \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix}
    0 & 1 \\
    1 & 0 \\
    \end{pmatrix} \right] \rightarrow 2ab ~~~ tr \left[ \begin{pmatrix}
    0 & 1 \\
    1 & 0 \\
    \end{pmatrix} \begin{pmatrix}
    a \\
    b
    \end {pmatrix} \begin{pmatrix} a & b \end{pmatrix} \right] \rightarrow 2ab \nonumber \]

    The last calculation on the right is justified by the following:

    \[ \langle \psi | \hat{O} | \psi \rangle = \sum_i \langle \psi | i \rangle \langle i | \hat{O} | \psi \rangle = \sum_i \langle i | \hat{O} | \psi \rangle \langle \psi | i \rangle = Trace \left( \hat{O} | \psi \rangle \langle \psi | \right) \nonumber \]


    This page titled 7.10: Using the Trace Function to Calculate Expectation Values is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.