Skip to main content
Chemistry LibreTexts

2.59: The Wigner Distribution for the 3p State of the 1D Hydrogen Atom

  • Page ID
    158673
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    This tutorial presents three pictures of the 3p state of the one‐dimensional hydrogen atom using its position, momentum and phase‐space representations.

    The energy operator for the one‐dimensional hydrogen atom in atomic units is:

    \[ \frac{-1}{2} \frac{d^2}{dx^2} \blacksquare + \frac{ \text{L(L+1)}}{2x^2} \blacksquare - \frac{1}{x} \blacksquare \nonumber \]

    The 3p wave function is:

    \[ \begin{matrix} \Psi (x) = \frac{8}{27 \sqrt{6}} \left( 1 - \frac{x}{6} \right) x^2 \text{exp} \left( \frac{-x}{2} \right) & \int_0^{ \infty} \Psi (x)^2 dx = 1 \end{matrix} \nonumber \]

    Screen Shot 2019-06-22 at 10.00.11 PM.png

    The 3p state energy is ‐0.0556 Eh.

    \[ \frac{-1}{2} \frac{d^2}{dx^2} \Psi (x) + \frac{1}{x^2} \Psi (x) - \frac{1}{x} \Psi (x) = \text{E} \Psi (x) \text{ solve, E} \rightarrow \frac{-1}{18} = -0.0556 \nonumber \]

    The momentum wave function is generated by the following Fourier transform of the coordinate space wave function.

    \[ \Phi (p) = \frac{1}{ \sqrt{2 \pi}} \int_0^{ \infty} \text{exp(-i p x)} \Psi (x) dx \rightarrow \frac{2}{3} 2^{ \frac{1}{2}} 6^{ \frac{1}{2}} \frac{(-1) + 6 \text{i p}}{(3 \text{i p} +1)^4 \pi^{ \frac{1}{2}}} \nonumber \]

    Screen Shot 2019-06-22 at 10.00.18 PM.png

    The Wigner function (phase‐space representation) for the 3p state is generated using the momentum wave function.

    \[ \text{W(x, p)} = \frac{1}{2 \pi} \int_{- \infty}^{ \infty} \overline{ \Phi \left( \text{p} + \frac{ \text{s}}{2} \right)} \text{exp(-i s x)} \Phi \left( \text{p} - \frac{ \text{s}}{2} \right) \text{ds} \nonumber \]

    The Wigner distribution is displayed graphically.

    \[ \begin{matrix} N = 150 & i = 0 .. N & x_i = \frac{35i}{N} & j = 0 .. N & p_j = -2 + \frac{4j}{N} & \text{Wigner}_{i,~j} = \text{W} \left( x_i,~p_j \right) \end{matrix} \nonumber \]

    Screen Shot 2019-06-22 at 10.00.27 PM.png


    This page titled 2.59: The Wigner Distribution for the 3p State of the 1D Hydrogen Atom is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.