1.85: The Difference Between Fermions and Bosons
- Page ID
- 157653
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)\[
\mathrm{n}_{1} :=1 \qquad \mathrm{n}_{2} :=2 \\ \Psi(x) :=\sqrt{2} \cdot \sin \left(n_{1} \cdot \pi \cdot x\right) \qquad \Phi(x) :=\sqrt{2} \cdot \sin \left(n_{2} \cdot \pi \cdot x\right)
\nonumber \]
Calculate the average separation, |x1 - x2|, for two fermions and two bosons in a 1D box of unit length.
Fermions have antisymmetric wave functions:
\[
\Psi_{\mathrm{f}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) :=\frac{\Psi\left(\mathrm{x}_{1}\right) \cdot \Phi\left(\mathrm{x}_{2}\right)-\Psi\left(\mathrm{x}_{2}\right) \cdot \Phi\left(\mathrm{x}_{1}\right)}{\sqrt{2}}
\nonumber \]
The average particle separation for indistinquishable fermions:
\[
\int_{0}^{1} \int_{0}^{1} \Psi_{\mathrm{f}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \cdot\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right| \cdot \Psi_{\mathrm{f}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{dx}_{1} \mathrm{dx}_{2}=0.383
\nonumber \]
The particles are correlated so as to keep them apart.
\[
\mathrm{N} :=40 \qquad \mathrm{i} :=0 . . \mathrm{N} \\ x_{1_{i}} :=\frac{1}{N} \quad j :=0 \ldots N \qquad x_{2} :=\frac{j}{N} \\ \Psi_{\mathrm{f}_{\mathrm{i}, \mathrm{j}}} :=\Psi_{\mathrm{f}\left(\mathrm{x}_{\mathrm{1_{i}}}, \mathrm{x}_{2_{j}}\right)^{2}}
\nonumber \]
Bosons have symmetric wave functions:
\[
\Psi_{\mathrm{b}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\frac{\Psi\left(\mathrm{x}_{1}\right) \cdot \Phi\left(\mathrm{x}_{2}\right)+\Psi\left(\mathrm{x}_{2}\right) \cdot \Phi\left(\mathrm{x}_{1}\right)}{\sqrt{2}}
\nonumber \]
The average particle separation for indistinquishable bosons:
\[
\int_{0}^{1} \int_{0}^{1} \Psi_{\mathrm{b}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \cdot\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right| \cdot \Psi_{\mathrm{b}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{dx}_{1} \mathrm{dx}_{2}=0.157
\nonumber \]
The particles are correlated so as to bring them closer together.
\[
\mathrm{N} :=40 \qquad \mathrm{i} :=0 . . \mathrm{N} \\ x_{1_{i}} :=\frac{1}{N} \quad j :=0 \ldots N \qquad x_{2} :=\frac{j}{N} \\ \Psi_{\mathrm{b}_{\mathrm{i}, \mathrm{j}}} :=\Psi_{\mathrm{b}\left(\mathrm{x}_{\mathrm{1_{i}}}, \mathrm{x}_{2_{j}}\right)^{2}}
\nonumber \]
All fundamental particles (electrons, neutrons, protons, photons, etc.) are either bosons or fermions. Composite entities such as the elements also fall into these two categories. The fundamental distinction is spin: bosons have integer spin (0, 1, 2, ...) while fermions have half-integer spin (1/2, 3/2, ....).
The dramatic difference in behavior between bosons and fermions has led to a sociology of fundamental particles. Bosons are social and gregarious, while fermions are antisocial and aloof.