# 1.23: Very Brief Relationship Between the Coordinate and Momentum Representations

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

A quon has position $$x_{1} :| x_{1} \rangle$$

Coordinate space $$\Leftrightarrow$$ Momentum space

$\langle x | x_{1}\rangle=\delta\left(x-x_{1}\right) \qquad \langle p | x_{1}\rangle d p]{\int\langle p | x\rangle\langle x | x_{1}\rangle d x} \langle p | x_{1}\rangle=\exp \left(-\frac{i p x_{1}}{\hbar}\right) \nonumber$

A quon has momentum $$p_{1} :| p_{1} \rangle$$

Coordinate space $$\Leftrightarrow$$ Momentum space

$\langle x | p_{1}\rangle=\exp \left(\frac{i p_{1} x}{\hbar}\right) \qquad {\int\langle p | x\rangle\langle x | p_{1}\rangle d x} \langle p | p_{1}\rangle=\delta\left(p-p_{1}\right) \nonumber$

This page titled 1.23: Very Brief Relationship Between the Coordinate and Momentum Representations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.