Skip to main content
Chemistry LibreTexts

1.29: Single Slit Diffraction and the Fourier Transform

  • Page ID
    143936
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Slit width: \(w : = 1\) Coordinate‐space wave function: \(\Psi(x, w) :=\text { if }\left[\left(x \geq-\frac{w}{2}\right) \cdot\left(x \leq \frac{w}{2}\right), 1,0\right]\)

    \[
    x :=\frac{-w}{2}, \frac{-w}{2}+.005 \dots \frac{w}{2}
    \nonumber \]

    clipboard_e6030a76c27abd91bbb4b72c4409a74e2.png

    A Fourier transform of the coordinate‐space wave function yields the momentum wave function and the momentum distribution function, which is the diffraction pattern.

    \[
    \Phi\left(\mathrm{p}_{\mathrm{X}}, \mathrm{w}\right) :=\frac{1}{\sqrt{2 \cdot \pi \cdot \mathrm{w}}} \cdot \int_{-\frac{\mathrm{w}}{2}}^{\frac{\mathrm{w}}{2}} \exp \left(-\mathrm{i} \cdot \mathrm{p}_{\mathrm{x}} \cdot \mathrm{x}\right) \mathrm{dx} \text { simplify } \rightarrow \frac{\sqrt{2} \cdot \sin \left(\frac{\mathrm{p}_{\mathrm{x}} \cdot \mathrm{w}}{2}\right)}{\sqrt{\pi} \cdot \mathrm{p}_{\mathrm{x}} \cdot \sqrt{\mathrm{w}}}
    \nonumber \]

    clipboard_ecc3aaa054e8863402f42f173a7cf1399.png

    Now Fourier transform the momentum wave function back to coordinate space and display result. This is done numerically using large limits of integration for momentum.

    \[
    \Psi(x, w) :=\int_{-5000}^{5000} \frac{\frac{1}{2} \sin \left(\frac{1}{2} \cdot w \cdot p_{x}\right)}{\pi^{\frac{1}{2}} \cdot w^{\frac{1}{2}} \cdot p_{x}} \cdot \frac{\exp \left(i \cdot p_{x^{*}} x\right)}{\sqrt{2 \cdot \pi}} d p_{x}
    \nonumber \]

    clipboard_e7aaaef62c4f8640409e53476d7199e18.png


    This page titled 1.29: Single Slit Diffraction and the Fourier Transform is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.