3.3: The Classical Virial Theorem (Microcanonical Derivation)
- Page ID
- 5165
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Consider a system with Hamiltonian \(H (x) \). Let \(x_i\) and \(x_j\) be specific components of the phase space vector.
The classical virial theorem states that
\[\langle x_i \dfrac {\partial H}{ \partial x_j}\rangle = kT\delta_{ij} \nonumber \]
-
where the average is taken with respect to a microcanonical ensemble.
To prove the theorem, start with the definition of the average:
\[\langle x_i \dfrac {\partial H}{\partial x_j}\rangle = \dfrac {C}{\Omega (E)} \int dx x_i \dfrac {\partial H}{\partial x_j} \delta(E-H(x)) \nonumber \]
where the fact that \(\delta (x) = \delta (-x) \) has been used. Also, the \(N\) and \(V\) dependence of the partition function have been suppressed. Note that the above average can be written as
\[\begin{align*} \langle x_i \frac {\partial H}{ \partial x_j}\rangle &= \frac {C}{\Omega(E)} \frac {\partial}{\partial E}\int dx x_i \frac {\partial H}{\partial x_j} \theta (E-H(x)) \\[4pt] &= \frac {C}{\Omega(E)} \frac {\partial}{\partial E} \int_{H(x)<E} dx x_i \frac {\partial H}{\partial x_j} \\[4pt] &= \frac {C}{\Omega(E)} \frac {\partial}{\partial E} \int_{H(x)<E} dx x_i \frac {\partial (H-E)}{\partial x_j} \end{align*} \]
However, writing
\[ x_i \frac {\partial (H-E)}{\partial x_j} = \frac {\partial}{\partial x_j} \left [x_i(H-E)\right ] - \delta_{ij}(H-E) \nonumber \]
allows the average to be expressed as
\[\begin{align*} \langle x_i \frac {\partial H}{ \partial x_j}\rangle &= \frac {C}{\Omega(E)} \frac {\partial}{\partial E} \int_{H(x)<E} dx \left \{\frac {\partial}{\partial x_j} \left [ x_i(H-E)\right ] + \delta_{ij}(E-H(x))\right \} \\[4pt] &= \frac {C}{\Omega(E)} \frac {\partial}{\partial E}\left [ \oint_{H=E} x_i (H-E) dS_j + \delta_{ij} \int_{H<E}d{x} (E-H(x)) \right ] \end{align*} \]
The first integral in the brackets is obtained by integrating the total derivative with respect to \(x_j\) over the phase space variable \(x_j\). This leaves an integral that must be performed over all other variables at the boundary of phase space where \(H = E\), as indicated by the surface element \(dS_j\). But the integrand involves the factor \(H - E \), so this integral will vanish. This leaves:
\[\begin{align*} \langle x_i \frac {\partial H}{ \partial x_j}\rangle &= \frac {C\delta_{ij}}{\Omega(E)} \frac {\partial}{\partial E}\int_{H(x)<E} dx (E-H(x)) \\[4pt] &= \dfrac {C\delta_{ij}}{\Omega(E)} \int_{H(x)<E} dx \\[4pt] &=\dfrac {\delta_{ij}}{\Omega(E)} \Sigma (E) \end{align*} \]
where \(\Sigma (E)\) is the partition function of the uniform ensemble. Recalling that \(\Omega(E) = \frac {\partial}{\partial E} \Sigma (E)\) we have
\[\begin{align*} \langle x_i \dfrac {\partial H}{ \partial x_j}\rangle &= \delta_{ij} \dfrac {\Sigma(E)}{\frac {\partial \Sigma(E)}{\partial E}} \\[4pt] &= \delta_{ij} \frac {1}{\dfrac {\partial \ln \Sigma(E)}{\partial E}} \\[4pt] &= k\delta_{ij} \frac {1}{\dfrac {\partial \tilde{S}}{\partial E}} \\[4pt]&= kT\delta_{ij} \end{align*} \]
which proves the theorem.
\(x_i = p_i \): and \(i = j\) The virial theorem says that
\[\langle p_i \frac {\partial H}{ \partial p_j}\rangle = kT \nonumber \]
\[\langle \frac {p_i^2}{m_i} \rangle = kT \nonumber \]
\[\langle \frac {p_i^2}{2m_i} \rangle = \frac {1}{2} kT \nonumber \]
Thus, at equilibrium, the kinetic energy of each particle must be \(\frac {kT}{2} \). By summing both sides over all the particles, we obtain a well know result
\[\sum_{i=1}^{3N} \langle \frac {p_i^2}{2m_i} \rangle =\sum_{i=1}^{3N} \langle \frac {1}{2}m_i v_i^2 \rangle = \frac {3}{ 2}NkT \nonumber \]