# 3.2: The Partition Function

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Consider two systems (1 and 2) in thermal contact such that

• $$N_2 \gg N_1$$
• $$E_2 \gg E_1$$
• $$N= N_1 + N_2$$
• $$E = E_1 + E_2$$
• $$\text {dim} (x_1) \gg \text {dim} (x_2)$$

and the total Hamiltonian is just

$H (x) = H_1 (x_1) + H_2 (x_2) \nonumber$

Since system 2 is infinitely large compared to system 1, it acts as an infinite heat reservoir that keeps system 1 at a constant temperature $$T$$ without gaining or losing an appreciable amount of heat, itself. Thus, system 1 is maintained at canonical conditions, $$N, V, T$$.

The full partition function $$\Omega (N, V, E )$$ for the combined system is the microcanonical partition function

$\Omega(N,V,E) = \int dx \delta(H(x)-E) = \int dx_1 dx_2 \delta (H_1(x_1) + H_2(x_2)-E) \nonumber$

Now, we define the distribution function, $$f (x_1)$$ of the phase space variables of system 1 as

$f(x_1) = \int dx_2 \delta (H_1(x_1)+ H_2(x_2)-E) \nonumber$

Taking the natural log of both sides, we have

$\ln f(x_1) = \ln \int dx_2 \delta (H_1(x_1) + H_2(x_2) - E) \nonumber$

Since $$E_2 \gg E_1$$, it follows that $$H_2 (x_2) \gg H_1 (x_1)$$, and we may expand the above expression about $$H_1 = 0$$. To linear order, the expression becomes

\begin{align*} \ln f (x_1) &= \ln \int dx_2 \delta (H_2(x_2)-E) + H_1(x_1) \frac {\partial }{ \partial H_1 (x_1)} \ln \int dx_2 \delta (H_1(x_1) + H_2(x_2) - E) \vert _{H_1(x_1)=0} \\[4pt] &= \ln \int dx_2 \delta (H_2(x_2)-E) -H_1(x_1) \frac {\partial}{\partial E} \ln \int dx_2 \delta (H_2(x_2)-E) \end{align*}

where, in the last line, the differentiation with respect to $$H_1$$ is replaced by differentiation with respect to $$E$$. Note that

$\ln \int dx_2 \delta (H_2( _2)-E) =\frac {S_2 (E)}{k} \nonumber$

$\frac {\partial}{\partial E} \ln \int dx_2 \delta (H_2(x_2)-E = \frac {\partial}{\partial E} \frac {S_2(E)}{k} = \frac {1}{kT} \nonumber$

where $$T$$ is the common temperature of the two systems. Using these two facts, we obtain

$\ln f (x_1) = \frac {S_2 (E)}{k} - \frac {H_1 (x_1)}{kT} \nonumber$

$f (x_1) = e^{\frac {S_2(E)}{k}}e^{\frac {-H_1(x_1)}{kT}} \nonumber$

Thus, the distribution function of the canonical ensemble is

$f(x) \propto e^{\frac {-H(x)}{kT}} \nonumber$

The prefactor $$exp (\frac {S_2 (E) }{k} )$$ is an irrelevant constant that can be disregarded as it will not affect any physical properties.

The normalization of the distribution function is the integral:

$\int dxe^{\frac {-H(x)}{kT}} \equiv Q(N,V,T) \nonumber$

where $$Q (N, V, T )$$ is the canonical partition function. It is convenient to define an inverse temperature $$\beta = \frac {1}{kT}$$. $$Q (N, V, T )$$ is the canonical partition function. As in the microcanonical case, we add in the ad hoc quantum corrections to the classical result to give

$Q(N,V,T) = \frac {1}{N!h^{3N}} \int dx e^{-\beta H(x)} \nonumber$

The thermodynamic relations are thus,

This page titled 3.2: The Partition Function is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.