Skip to main content
Library homepage
Chemistry LibreTexts

9: Alkynes - An Introduction to Organic Synthesis

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives

    After you have completed Chapter 9, you should be able to

    1. fulfillall of the detailed objectives listed under each individual section.
    2. solve road-map problems involving any of the reactions introduced to this point.
    3. design multistep syntheses using any of the reactions introduced to this point, and determine the viability of a given synthesis.
    4. define, and use in context, the key terms introduced.

    Addition reactions not only dominate the chemistry of alkenes, they are also the major class of reaction you will encounter. This chapter discusses an important difference between (terminal) alkynes and alkenes, that is, the acidity of the former; it also addresses the problem of devising organic syntheses. Once you have completed this chapter you will have increased the number of organic reactions in your repertoire, and should be able to design much more elaborate multistep syntheses. As you work through Chapter 9, you should notice the many similarities among the reactions described here and those in Chapters 7 and 8.

    • 9.1: Naming Alkynes
      Alkynes are organic molecules made of the functional group carbon-carbon triple bonds and are written in the empirical formula of CnH2n−2 . They are unsaturated hydrocarbons. Like alkenes have the suffix –ene, alkynes use the ending –yne; this suffix is used when there is only one alkyne in the molecule.
    • 9.2: Preparation of Alkynes - Elimination Reactions of Dihalides
      Alkynes can be a useful functional group to synthesize due to some of their antibacterial, antiparasitic, and antifungal properties. One simple method for alkyne synthesis is by double elimination from a dihaloalkane.
    • 9.3: Reactions of Alkynes - Addition of HX and X₂
    • 9.4: Hydration of Alkynes
      As with alkenes, hydration (addition of water) to alkynes requires a strong acid, usually sulfuric acid, and is facilitated by mercuric sulfate. However, unlike the additions to double bonds which give alcohol products, addition of water to alkynes gives ketone products ( except for acetylene which yields acetaldehyde ). The explanation for this deviation lies in enol-keto tautomerization.
    • 9.5: Reduction of Alkynes
      Reactions between alkynes and catalysts are a common source of alkene formation. Because alkynes differ from alkenes on account of their two procurable π bonds, alkynes are more susceptible to additions. Aside from turning them into alkenes, these catalysts affect the arrangement of substituents on the newly formed alkene molecule. Depending on which catalyst is used, the catalysts cause anti- or syn-addition of hydrogens. Alkynes can readily undergo additions because of their availability of tw
    • 9.6: Oxidative Cleavage of Alkynes
      Alkynes, similar to alkenes, can be oxidized gently or strongly depending on the reaction environment. Since alkynes are less stable than alkenens, the reactions conditions can be gentler.
    • 9.7: Alkyne Acidity - Formation of Acetylide Anions
      Terminal alkynes are much more acidic than most other hydrocarbons. Removal of the proton leads to the formation of an acetylide anion, RC=C:-. The origin of the enhanced acidity can be attributed to the stability of the acetylide anion, which has the unpaired electrons in an sp hybridized orbital. The stability results from occupying an orbital with a high degree of s-orbital character.
    • 9.8: Alkylation of Acetylide Anions
      The alkylation of acetylide ions is important in organic synthesis because it is a reaction in which a new carbon-carbon bond is formed; hence, it can be used when an organic chemist is trying to build a complicated molecule from much simpler starting materials.
    • 9.9: An Introduction to Organic Synthesis
    • 9.S: Alkynes - An Introduction to Organic Synthesis (Summary)

    9: Alkynes - An Introduction to Organic Synthesis is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Dietmar Kennepohl.

    • Was this article helpful?