Skip to main content
Chemistry LibreTexts

19.8C: Structural Isomerism - Coordination Isomerism

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Coordination isomerism occurs in compounds containing complex anionic and cationic parts and can be viewed as the interchange of one or more ligands between the cationic complex ion and the anionic complex ion. For example, \(\ce{[Co(NH3)6][Cr(CN)6]}\) is a coordination isomer with \(\ce{[Cr(NH3)6][Co(CN)6]}\). Alternatively, coordination isomers may be formed by switching the metals between the two complex ions like \(\ce{[Zn(NH3)4][CuCl4]}\) and \(\ce{[Cu(NH3)4][ZnCl4]}\).


    Exercise \(\PageIndex{1}\)

    Are \(\ce{[Cu(NH3)4][PtCl4]}\) and \(\ce{[Pt(NH3)4][CuCl4]}\) coordination isomers?


    Here, both the cation and anion are complex ions. In the first isomer, \(\ce{NH3}\) is attached to the copper and the \(\ce{Cl^{-}}\) are attached to the platinum. In the second isomer, they have swapped.

    Yes, they are coordination isomers.

    Exercise \(\PageIndex{2}\)

    What is one coordination isomer of \(\ce{[Co(NH3)6] [Cr(C2O4)3]}\)?


    Coordination isomers involve swapping the species from the inner coordination sphere to one metal (e.g, cation) to inner coordination sphere of a different metal (e.g., the anion) in the compound. One isomer is completely swapping the ligand sphere, e.g, \(\ce{[Co(C2O4)3] [Cr(NH3)6]}\).

    Alternative coordination isomers are \(\ce{ [Co(NH3)4(C2O4)] [Cr(NH3)2(C2O4)2]}\) and \(\ce{ [Co(NH3)2(C2O4)2] [Cr(NH3)4(C2O4)]}\).

    Contributors and Attributions

    19.8C: Structural Isomerism - Coordination Isomerism is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?