Skip to main content
Chemistry LibreTexts

10.3: Isotopes of Hydrogen

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Hydrogen has three naturally occurring isotopes, denoted 1H, 2H and 3H. Other, highly unstable nuclei (4H to 7H) have been synthesized in the laboratory but are not observed in nature.

    • 1H is the most common hydrogen isotope with an abundance of more than 99.98%. Because the nucleus of this isotope consists of only a single proton, it is given the descriptive, but rarely used formal name of protium.
    • 2H, the other stable hydrogen isotope, is known as deuterium and contains one proton and one neutron in its nucleus. Essentially all deuterium in the universe is thought to have been produced at the time of the Big Bang, and has endured since that time. Deuterium is not radioactive, and does not represent a significant toxicity hazard. Water enriched in molecules that include deuterium instead of normal hydrogen is called heavy water. Deuterium and its compounds are used as a non-radioactive label in chemical experiments and in solvents for 1H-NMR spectroscopy. Heavy water is used as a neutron moderator and coolant for nuclear reactors. Deuterium is also a potential fuel for commercial nuclear fusion.
    • 3H is known as tritium and contains one proton and two neutrons in its nucleus. It is radioactive, decaying into helium-3 through beta decay with a half-life of 12.32 years. It is sufficiently radioactive that it can be used in luminous paint, making it useful in such things as watches where the glass moderates the amount of radiation getting out. Small amounts of tritium occur naturally because of the interaction of cosmic rays with atmospheric gases; tritium has also been released during nuclear weapons tests. It is used in nuclear fusion reactions, as a tracer in isotope geochemistry, and specialized in self-powered lighting devices. Tritium has been used in chemical and biological labeling experiments as a radiolabel.

    Hydrogen is the only element that has different names for its isotopes in common use today. During the early study of radioactivity, various heavy radioactive isotopes were given their own names, but these names are no longer used, except for deuterium and tritium.

    nuclide symbol Z(p) N(n) isotopic mass (u) half-life decay mode Daughter Isotope Isotopic composition
    1H 1 0 1.00782503207(10) Stable - - 0.999885(70)
    2H - D 1 1 2.0141017778(4) Stable - - 0.000115(70)
    3H - T 1 2 3.0160492777(25) 12.32(2) y β 3He <1>17 atoms

    10.3: Isotopes of Hydrogen is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?