Skip to main content
Chemistry LibreTexts

2.2: Self-Assessment- Bonding and Molecules + Answer

  • Page ID
    408596
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Problem #1

    (a) Draw the energy level diagram that shows that the linear combination of atomic orbitals from two atoms of oxygen \((\mathrm{O})\) results in the formation of the stable molecule, \(\mathrm{O}_2{ }^{2-}\). The molecular orbitals in \(\mathrm{O}_2{ }^{2-}\) increase in energy according to the sequence \(\sigma_{2 s}, \sigma_{2 s} *, \sigma_{2 p_z}, \pi_{2 p_{x, y}}, \pi_{2 p_{x, y}}^*, \sigma_{2 p_z} *\).

    Answer

    Screen Shot 2022-08-31 at 7.50.10 PM.png

    (b) Indium phosphide \((\operatorname{InP})\) is a semiconductor with a band gap, \(E_{\mathrm{g}}\), of \(1.27 \mathrm{eV}\). Calculate the value of the absorption edge of this material. Express your answer in meters.

    Answer

    for absorption of incoming radiation, the following must be true:

    \(E_{\text {radiation }}=E_g \text {. }\)

    using the Planck relationship gives the wavelength of the absorption edge

    \begin{aligned}
    &E_{\text {radiation }}=\frac{h c}{\lambda} \\
    &\therefore \lambda=\frac{h c}{E_g}=\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.27 \times 1.6 \times 10^{-19}}=9.74 \times 10^{-7} \mathrm{~m} .
    \end{aligned}

    Problem #2

    Chemical analysis of a silicon (Si) crystal reveals boron (B) at a level of 0.0003 atomic percent.

    (a) Assuming that the concentration of thermally excited charge carriers from the \(\mathrm{Si}\) matrix is negligible, calculate the density of free charge carriers (carriers \(/ \mathrm{cm}^3\) ) in this \(\mathrm{Si}\) crystal.

    Answer

    each B atom will attract an electron and thus create a "mobile hole"; we only have to determine the number of \(\mathrm{B}\) atoms \(/ \mathrm{cm}^3\) of \(\mathrm{Si}\). The atomic volume of the host crystal (\(\mathrm{Si}\)) is given on your \(\mathrm{PT}\) as \(12.05 \mathrm{~cm}^3 / \mathrm{mole}\).

    \(\# \mathrm{Si}\) atoms \(/ \mathrm{cm}^3=\frac{6.02 \times 10^{23} \text { atoms }}{1 \text { mole }} \times \frac{1 \text { mole }}{12.05 \mathrm{~cm}^3}=5.00 \times 10^{22}\) atoms \(/ \mathrm{cm}^3\)

    \(\therefore  \# \mathrm{~B} \text{ atoms} / \mathrm{cm}^3=5.00 \times 10^{22} \times 0.0003 \times 10^{-2}=1.50 \times 10^{17} \mathrm{~B} / \mathrm{cm}^3\)

    thus, the number of free charge carriers ("holes") is \(1.50 \times 10^{17} / \mathrm{cm}^3\); they are created through the acquisition of one electron by each \(\mathrm{B}\) atom from the valence band of the host $\mathrm{Si}$ crystal.

    (b) Draw a schematic energy band diagram for this material and label the valence band, conduction band, band gap, and the energy level associated with the B impurity.

    Answer

    Screen Shot 2022-08-31 at 8.41.04 PM.png


    This page titled 2.2: Self-Assessment- Bonding and Molecules + Answer is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Donald Sadoway (MIT OpenCourseWare) .