Skip to main content
Chemistry LibreTexts

5: Dioxygen Reactions

  • Page ID
    59624
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    I. Introduction1

    The major pathway of dioxygen use in aerobic organisms is four-electron reduction to give two molecules of water per dioxygen molecule:2

    \[O_{2} + 4H^{+} + 4e^{-} \rightarrow 2 H_{2}O \qquad E^{o} = +0.815 V \tag{5.1}\]

    This reaction represents the major source of energy in aerobic organisms when coupled with the oxidation of electron-rich organic foodstuffs, such as glucose. Biological oxidation of this type is called respiration, and has been estimated to account for 90 percent or more of the dioxygen consumed in the biosphere. It is carried out by means of a series of enzyme-catalyzed reactions that are coupled to ATP synthesis, and the ATP produced is the major source of energy for the organism. The actual site of the reduction of dioxygen in many organisms is the enzyme cytochrome c oxidase.2

    Another use of dioxygen in aerobic organisms is to function as a source of oxygen atoms in the biosynthesis of various molecules in metabolic pathways, or in conversions of lipid-soluble molecules to water-soluble forms for purposes of excretion. These reactions are also enzyme-catalyzed, and the enzymes involved are either monooxygenase or dioxygenase enzymes, depending on whether one or both of the oxygen atoms from dioxygen are incorporated in the final organic product. Many of these enzymes are metalloenzymes.2-4

    The advantages of life in air are considerable for an aerobic organism as compared to an anaerobic organism, mainly because the powerful oxidizing power of dioxygen can be controlled and efficiently converted to a form that can be stored and subsequently used.5 But aerobic metabolism has its disadvantages as well. The interior of a living cell is a reducing environment, and many of the components of the cell are fully capable thermodynamically of reacting directly with dioxygen, thus bypassing the enzymes that control and direct the beneficial reactions of dioxygen.6 Luckily, for reasons that are discussed below, these reactions generally are slow, and therefore represent minor pathways of biological dioxygen consumption. Otherwise, the cell would just burn up, and aerobic life as we know it would be impossible. Nevertheless, there are small but significant amounts of products formed from nonenzymatic and enzymatic reactions of dioxygen that produce partially reduced forms of dioxygen, i.e., superoxide, O2-, and hydrogen peroxide, H2O2 , in aerobic cells. These forms of reduced dioxygen or species derived from them could carry out deleterious reactions, and enzymes have been identified that appear to protect against such hazards. These enzymes are, for superoxide, the superoxide dismutase enzymes, and, for peroxide, catalase and the peroxidase enzymes. All of these enzymes are metalloenzymes.2-4

    Much of the fascination of the subject of biological reactions of dioxygen stems from the fact that the mechanisms of the biological, enzyme-catalyzed reactions are clearly quite different from those of the uncatalyzed reactions of dioxygen or even those of dioxygen reactions catalyzed by a wide variety of nonbiological metal-containing catalysts.7 Investigators believe, optimistically, that once they truly understand the biological reactions, they will be able to design synthetic catalysts that mimic the biological catalysts, at least in reproducing the reaction types, even if these new catalysts do not match the enzymes in rate and specificity. To introduce this topic, therefore, we first consider the factors that determine the characteristics of nonbiological reactions of dioxygen.

    IV. Cytochrome c Oxidase

    1. Spectroscopic Characterization

      1. Models
      2. Spectroscopy of the Enzyme
    2. Mechanism of Dioxygen Reduction

      1. Models
      2. Mechanistic Studies of the Enzyme

    VIII. References

    1. The references in this chapter cite recent review articles or books when available; these are indicated by (R) or (B), respectively, in the citation, and the titles of review articles are given. Students should consult these sources if they want more detailed information about a particular topic or references to the original literature.
    2. B. G. Malmström, "Enzymology of Oxygen" (R), Annu. Rev. Biochem. 51 (1982), 21-59.
    3. L. L. Ingraham and D. L. Meyer, Biochemistry of Dioxygen (B), Plenum, 1985.
    4. O. Hayaishi, ed., Molecular Mechanisms of Oxygen Activation (B), Academic Press, 1974, pp. 405- 451.
    5. P. George, "The Fitness of Oxygen" (R), in T. E. King, H. S. Mason, and M. Morrison, eds., Oxidases and Related Redox Systems, Wiley, 1 (1965), 3-36.
    6. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine (B), Clarendon Press, 1989.
    7. R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds (B), Academic Press, 1981.
    8. D. T. Sawyer, "The Chemistry and Activation of Dioxygen Species (O2, O2•-, and HOOH) in Biology" (R), in A. E. Martell and D. T. Sawyer, eds., Oxygen Complexes and Oxygen Activation by Transition Metals, Plenum, 1988, pp. 131-148.
    9. P. M. Wood, Trends in Biochem. Sci. 12 (1987), 250-251.
    10. R. H. Holm, "Metal-Centered Oxygen Atom Transfer Reactions" (R), Chem. Rev. 87 (1987), 1401- 1449.
    11. Calculated from data in D. D. Wagman et al., Selected Values of Chemical Thermodynamic Properties, Institute for Basic Standards, NBS, 1968.
    12. Calculated from data in M. Bertholon et al., Bull. Soc. Chim. Fr. 9 (1971), 3180-3187.
    13. Calculated from data in A. Finch, P. J. Gardner, and D. Wu, Thermochim. Acta 66 (1983), 333-342.
    14. L. Shaofeng and G. Pilcher, J. Chem. Thermodynamics 20 (1988), 463-465.
    15. G. A. Hamilton, "Chemical Models and Mechanisms for Oxygenases" (R), in Reference 4, pp. 405- 451.
    16. H. Taube, "Mechanisms of Oxidation with Oxygen" (R), J. Gen. Physiol. 49, part 2 (1965), 29-52.
    17. J. G. Calvert and J. N. Pitts, Photochemistry, Wiley, 1966.
    18. H. H. Wasserman and R. W. Murray, eds., Singlet Oxygen (B), Academic Press, 1979.
    19. A. A. Frimer, ed., Singlet O2 (B), CRC Press, 1985.
    20. T. C. Bruice, "Chemical Studies and the Mechanism of Flavin Mixed Function Oxidase Enzymes (R), in J. F. Liebman and A. Greenberg, eds., Mechanistic Principles of Enzyme Activity, VCH Publishers, 1988, pp. 315-352.
    21. Reference 7, p. 18.
    22. Reference 7, p. 316.
    23. Reference 3, p. 16.
    24. N. A. Porter et al., J. Am. Chem. Soc. 103 (1981), 6447-6455.
    25. W. Day, Genesis on Planet Earth: The Search for Life's Beginning, Yale University Press, 2d ed., 1984.
    26. D. L. Gilbert, ed., Oxygen and Living Processes: An Interdisciplinary Approach (B), Springer-Verlag, 1981.
    27. B. Quebedeaux et al., Plant Physiol. 56 (1975), 761-764.
    28. O. R. Brown and F. Yein, Biochem. Biophys. Res. Commun. 85 (1978), 1219-1224.
    29. L. J. Machlin and A. Bendich, FASEB J. 1 (1987), 441-445.
    30. D. S. Tarbell, in N. Kharasch, ed., Organic Sulfur Compounds, Pergamon, 1 (1961), 97-102.
    31. C. Walling, Acc. Chem. Res. 8 (1975), 125-132.
    32. D. C. Harris and P. Aisen, in T. M. Loehr, ed., Iron Carriers and Iron Proteins, VCH Publishers, 1989, pp. 239-371.
    33. G. Storz, L. A. Tartaglia, and B. N. Ames, Science 248 (1990), 189-194, and references therein.
    34. T. Keng and L. Guarente, Proc. Natl. Acad. Sci. USA 84 (1987), 9113-9117, and references therein.
    35. R. Gerschman et al., Science 119 (1954), 623-626.
    36. J. M. McCord and J. Fridovich, J. Biol. Chem. 244 (1969), 6049-6055.
    37. D. T. Sawyer and J. S. Valentine, "How Super is Superoxide?" (R), Acc. Chem. Res. 14 (1981), 393- 400.
    38. L. W. Oberley, ed., Superoxide Dismutase, CRC Press, 2 vols., 1982, vol. 3, 1985.
    39. J. A. Fee, "Is Superoxide Important in Oxygen Poisoning?" (R), Trends Biochem. Sci. 7 (1982), 84- 86, and references therein.
    40. P. Korbashi et al., J. Biol. Chem. 264 (1989), 8479-8482.
    41. E. R. Stadtman, "Metal Ion-Catalyzed Oxidation of Proteins: Biochemical Mechanism and Biological Consequences" (R), Free Radicals in Biology & Medicine 9 (1990), 315-325.
    42. D. O. Natvig et al., J. BioI. Chem. 262 (1987), 14697-14701.
    43. C. Bowler et al., J. Bacteriol. 172 (1990), 1539-1546.
    44. M. Wikstrom and G. T. Babcock, Nature 348 (1990), 16-17.
    45. G. Palmer, "Cytochrome Oxidase: a Perspective" (R), Pure Appl. Chem. 59 (1987), 749-758.
    46. T. Vanngard, ed., Biophysical Chemistry of Dioxygen Reactions in Respiration and Photosynthesis, Chemica Scripta 28A (B), Cambridge University Press, 1988.
    47. W. R. Scheidt and C. A. Reed, "Spin-State/Stereochemical Relationships in Iron Porphyrins: Implications for the Hemoproteins" (R), Chem. Rev. 81 (1981), 543-555.
    48. F. S. Mathews, M. Levine, and P. Argos, J. Mol. Biol. 64 (1972), 449-464.
    49. W. E. Blumberg and J. Peisach, Adv. Chem. Ser. 100 (1971), 271-291.
    50. J. Peisach, W. E. Blumberg, and A. Adler, Ann. N.Y. Acad. Sci. 206 (1973), 310-327.
    51. J. P. Collman, T. R. Halbert, and K. S. Suslick, "O2 Binding to Heme Proteins and Their Synthetic Analogues" (R), in T. G. Spiro, ed., Metal-Ion Activation of Dioxygen, Wiley, 1980, pp. 1-72.
    52. R. Quinn, M. Nappa, and J. S. Valentine, J. Am. Chem. Soc. 104 (1982), 2588-2595.
    53. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, 5th ed., 1988, pp. 755-775.
    54. T. H. Stevens et al., J. Biol. Chem. 257 (1982), 12106-12113.
    55. W. B. Mims et al., J. Biol. Chem. 255 (1980), 6843-6846.
    56. T. H. Stevens et al., Proc. Natl. Acad. Sci USA 76 (1979), 3320-3324.
    57. T. A. Kent et al., J. Biol. Chem. 258 (1983), 8543-8546.
    58. J. Cline et al., J. Biol. Chem. 258 (1983), 5124-5128.
    59. T. H. Stevens and S. I. Chan, J. Biol. Chem. 256 (1981), 1069-1071.
    60. D. H. Chin, G. N. La Mar, and A. Balch, J. Am. Chem. Soc. 102 (1980), 4344-4350.
    61. A. L. Balch et al., J. Am. Chem. Soc. 106 (1984), 7779-7785.
    62. K. D. Karlin and Y. Gultneh, "Binding and Activation of Molecular Oxygen by Copper Complexes" (R), Prog. Inorg. Chem. 35 (1987), 219-327.
    63. R. R. Jacobson et al., J. Am. Chem. Soc. 110 (1988), 3690-3692.
    64. N. Kitajima, K. Fujisawa, and Y. Moro-oka, J. Am. Chem. Soc. 111 (1989), 8975-8976.
    65. S. Han, Y.-C. Chin, and D. L. Rousseau, Nature 348 (1990), 89-90.
    66. L. Que, Jr., "The Catechol Dioxygenases" (R), in Reference 32, pp. 467-524.
    67. L. Que, Jr., "Spectroscopic Studies of the Catechol Dioxygenases" (R), J. Chem. Ed. 62 (1985), 938- 943.
    68. J. W. Whittaker et al., J. Biol. Chem. 259 (1984), 4466-4475.
    69. Y. Tomimatsu, S. Kint, and J. R. Scherer, Biochemistry 15 (1976), 4918-4924.
    70. D. H. Ohlendorf, J. D. Lipscomb, and P. C. Weber, Nature 336 (1988), 403-405.
    71. D. D. Cox and L. Que, Jr., J. Am. Chem. Soc. 110 (1988), 8085-8092.
    72. Y. Sawaki and C. S. Foote, J. Am. Chem. Soc. 105 (1983), 5035-5040.
    73. P. R. Ortiz de Montellano, ed., Cytochrome P-450: Structure, Mechanism, and Biochemistry (B), Plenum, 1986.
    74. K. Lerch, "Copper Monooxygenases: Tyrosinase and Dopamine \(\beta\)-Monooxygenase" (R), Metal Ions Biol. Syst. 13 (1981), 143-186.
    75. J. Green and H. Dalton, J. Biol. Chem. 264 (1989), 17698-17703, and references therein.
    76. A. Ericson et al., J. Am. Chem. Soc. 110 (1988), 2330-2332.
    77. J. E. Colbert, A. G. Katopodis, and S. W. May, J. Am. Chem. Soc. 112 (1990), 3993-3996, and references therein.
    78. L. C. Stewart and J. P. Klinman, "Dopamine \(\beta\)-Hydroxylase of Adrenal Chromaffin Granules: Structure and Function" (R), Annu. Rev. Biochem. 57 (1988), 551-592.
    79. T. A. Dix and S. J. Benkovic, "Mechanism of Oxygen Activation by Pteridine-Dependent Monooxygenases" (R), Acc. Chem. Res. 21 (1988), 101-107.
    80. T. L. Poulos, "The Crystal Structure of Cytochrome P-450cam" (R), in Reference 73, pp. 505-523.
    81. T. J. McMurry and J. T. Groves, "Metalloporphyrin Models for Cytochrome P-450" (R), in Reference 73, pp. 1-28.
    82. J. T. Groves, T. E. Nemo, and R. S. Myers, J. Am. Chem. Soc. 101 (1979), 1032-1033.
    83. . J. T. Groves, "Key Elements of the Chemistry of Cytochrome P-450: The Oxygen Rebound Mechanism" (R), J. Chem. Ed. 62 (1985), 928-931.
    84. D. Dolphin et al., Ann. N.Y. Acad. Sci. 206 (1973),177-200.
    85. E. McCandlish et al., J. Am. Chem. Soc. 102 (1980), 4268-4271.
    86. J. N. Burstyn et al., J. Am. Chem. Soc. 110 (1988), 1382-1388.
    87. J. S. Valentine, J. N. Burstyn, and L. D. Margerum, "Mechanisms of Dioxygen Activation in Metal-Containing Monooxygenases: Enzymes and Model Systems" (R), in Reference 8, pp. 175-187.
    88. T. C. Bruice, "Chemical Studies Related to Iron Protoporphyrin-IX Mixed Function Oxidases" (R), in Reference 20, pp. 227-277.
    89. T. G. Traylor, W.-P. Fann, and D. Bandyopadhyay, J. Am. Chem. Soc. 111 (1989), 8009-8010.
    90. R. Raag and T. L. Poulos, Biochemistry 28 (1989), 7586-7592, and references therein.
    91. P. R. Ortiz de Montellano, "Oxygen Activation and Transfer" (R), in Reference 73, pp. 217-271.
    92. K. Murata et al., J. Am. Chem. Soc. 112 (1990), 6072-6083, and references therein.
    93. T. G. Traylor and J. P. Ciccone, J. Am. Chem. Soc. 111 (1989), 8413-8420, and references therein.
    94. J. Everse, K. E. Everse, and M. B. Grisham, eds., Peroxidases in Chemistry and Biology (B), CRC Press, 1991.
    95. H. B. Dunford, "Peroxidases" (R), Adv. Inorg. Biochem. 4 (1982), 41-68.
    96. T. L. Poulos and J. Kraut, J. Biol. Chem. 225 (1980), 8199-8205.
    97. M. Morrison and G. R. Schonbaum, Annu. Rev. Biochem. 45 (1976), 861-888.
    98. R. Quinn et al., J. Am. Chem. Soc. 106 (1984), 4136-4144.
    99. P. R. Ortiz de Montellano et al., J. Biol. Chem. 262 (1987), 11641-11646.
    100. J. S. Valentine and M. W. Pantoliano, "Protein-Metal Ion Interactions in Cuprozinc Protein (Superoxide Dismutase)" (R), in T. G. Spiro, ed., Copper Proteins, 1981, pp. 291-358.
    101. J. S. Valentine and D. Mota de Freitas, J. Chem. Ed. 62 (1985), 990-997.
    102. J. V. Bannister, W. H. Bannister, and G. Rotilio, "Aspects of the Structure, Function, and Applications of Superoxide Dismutase" (R), CRC Crit. Rev. Biochem. 22 (1987), 111-180.
    103. See Reference 38.
    104. S. B. Farr, R. D'Ari, and D. Touati, Proc. Natl. Acad. Sci. USA 83 (1986), 8268-8272.
    105. O. Bermingham-McDonogh, E. B. Gralla, and J. S. Valentine, Proc. Natl. Acad. Sci. USA 85 (1988), 4789-4793.
    106. J. S. Valentine and A. B. Curtis, J. Am. Chem. Soc. 97 (1975), 224-226.
    107. M. Nappa et al., J. Am. Chem. Soc. 101 (1979), 7744-7746.
    108. G. J. McClune et al., J. Am. Chem. Soc. 99 (1977), 5220-5222.
    109. P. Natarajan and N. V. Raghavan, J. Am. Chem. Soc. 102 (1980), 4518-4519.
    110. M. W. Pantoliano et al., J. Inorg. Biochem. 17 (1982), 325-341.
    111. J. A. Roe et al., Biochemistry 27 (1988), 950-958.
    112. J. A. Tainer et al., Nature 306 (1983),284-289.
    113. J. A. Fee and C. Bull, J. Biol. Chem. 261 (1986), 13000-13005.
    114. I. Bertini et al., J. Am. Chem. Soc. 111 (1989), 714-719.
    115. L. Banci et al., Inorg. Chem. 27 (1988), 107-109.
    116. D. Mota de Freitas et al., Inorg. Chem. 26 (1987), 2788-2791.
    117. L.-J. Ming and J. S. Valentine, J. Am. Chem. Soc. 109 (1987), 4426-4428.
    118. I. Bertini et al., J. Am. Chem. Soc. 107 (1985), 4391-4396.
    119. L.-J. Ming et al., Inorg. Chem. 27 (1988), 4458-4463.
    120. L. Banci et al., Inorg. Chem. 29 (1990), 2398-2403, and references therein.
    121. J. A. Imlay and I. Fridovich, J. Biol. Chem. 266 (1991), 6957-6965.
    122. P. R. Gardner and I. Fridovich, J. BioI. Chem. 266 (1991), 19328-19333.
    123. J. S. Beckman et al., Proc. Natl. Acad. Sci. USA 87 (1990), 1620-1624.
    124. P. R. Ortiz de Montellano, Annu. Rev. Pharmacol. 32 (1992),89-107.
    125. The author gratefully acknowledges research support from the National Science Foundation and the National Institutes of Health while this chapter was being written, editoral assistance from Dr. Bertram Selverstone, and patience and support from Dr. Andrew J. Clark.
    126. It has been suggested recently that the CuA site in cytochrome c oxidase may contain two copper ions. See P. M. Kroneck et aI., FEBS Lett. 268 (1990), 274-276.
    127. An excellent review relevant to this chapter has recently appeared. K. D. Karlin, Science 261 (1993), 701-708.

    Contributors and Attributions

    • Joan Selverstone Valentine (University of California, Los Angeles, Department of Chemistry and Biochemistry)

    5: Dioxygen Reactions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?