Skip to main content
Chemistry LibreTexts

4.21: Ch. 4 References and Abbreviations

  • Page ID
    60711
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    References

    1. C. K. Mathews and K. E. van Holde, Biochemistry, Benjamin/Cummings, 1990.
    2. a) M. Nikinmaa, Vertebrate Red Blood Cells: Adaptations of Function to Respiratory Requirements, Springer-Verlag, 1990. b) D. Hershey, ed., Blood Oxygenation, Plenum, 1970. c) D. W. Lübbers, H. Acker, E. Leniger-Follert, and T. K. Goldstick, eds., Oxygen Transport to Tissues V, Plenum, 1984. d) F. Kreuzer, S. M. Cain, Z. Turek, and T. K. Goldstick, eds., Oxygen Transport to Tissues VII, Plenum, 1984.
    3. a) P. Astrup and M. Rørth, eds., Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status, Munksgaard, 1972. b) G. L. Eichhorn, ed., Inorganic Biochemistry, Elsevier, 2 vols., 1973.
    4. M. Brunori, A. Coletta, and B. Giardina, in P. M. Harrison, ed., Topics in Molecular and Structural Biology, Verlag Chemie, 7, Part 2 (1985), 263-331.
    5. A. G. Sykes, in A. G. Sykes, ed., Advances in Inorganic and Bioinorganic Mechanisms, Academic Press, 1 (1985), 121-178.
    6. M. Brunori, B. Giardina, and H. A. Kuiper, in H. A. O. Hill, ed., Inorganic Biochemistry, Royal Society of Chemistry 3 (1982), 126-182.
    7. R. E. Dickerson and I. Geis, Hemoglobin: Structure, Function, Evolution, and Pathology, Benjamin/ Cummings, 1983.
    8. H. F. Bunn, B. G. Forget, and H. M. Ranney, Human Hemoglobins, Saunders, 1977.
    9. K. Imai, Allosteric Effects in Haemoglobin, Cambridge University Press, 1982.
    10. E. Antonini and M. Brunori, Hemoglobin and Myoglobin in Their Reactions with Ligands, North Holland, 1971.
    11. a) M. F. Perutz, Nature 228 (1970), 726-739. b) M. F. Perutz, Annu. Rev. Biochem. 48 (1979), 327-386. c) M. F. Perutz et al., Acc. Chem. Res. 20 (1987), 309-321.
    12. M. C. M. Chung and H. D. Ellerton, Prog. Biophys. Mol. Biol. 35 (1979), 53-102.
    13. J. Lamy and J. Lamy, eds., Invertebrate Oxygen-Binding Proteins: Structure, Active Site and Function, Dekker, 1981.
    14. H. D. Ellerton, N. F. Ellerton, and H. A. Robinson, Prog. Biophys. Mol. Biol. 41 (1983), 143-248.
    15. a) K. E. van Holde and K. I. Miller, Quart. Rev. Biophys. 15 (1982), 1-129. b) K. D. Karlin and J. Zubieta, eds., Biological and Inorganic Chemistry of Copper, Academic Press, 2 vols., 1986.
    16. P. C. Wilkins and R. G. Wilkins, Coord. Chem. Rev. 79 (1987), 195-214; in this see references to the original literature.
    17. I. M. Klotz and D. M. Kurtz, Jr., Acc. Chem. Res. 17 (1984), 16-22.
    18. J. Sanders Loehr and T. M. Loehr, Adv. Inorg. Blochem. 1 (1979), 235-252.
    19. K. Denbigh, The Principles of Chemical Equilibrium, Cambridge University Press, 4th ed., 1981.
    20. P. W. Atkins, Physical Chemistry, Freeman, 3d ed., 1986.
    21. J. P. Collman, J. I. Brauman, and K. M. Doxsee, Proc. Natl. Acad. Sci. USA 76 (1979), 6035-6039.
    22. D. Lexa et al., Inorg. Chem. 25 (1986), 4857-4865.
    23. K. S. Suslick, M. M. Fox, and T. J. Reinert, J. Am. Chem. Soc. 106 (1984), 4522-4525.
    24. A. V. Hill, J. Physiol. 40 (1910), iv-vii.
    25. a) R. W. Root, Biol. Bull. (Woods Hole, Mass.) 61 (1931), 427-456. b) G. G. Dodson et al., J. Mol. Biol. 211 (1990), 691-692.
    26. G. S. Adair, J. Biol. Chem. 63 (1925), 529-545.
    27. Reference 9, 114.
    28. J. Monod, J. Wyman, and J.-P. Changeux, J. Mol. Biol. 12 (1965), 88-118.
    29. a) M. L. Johnson, B. W. Turner, and G. K. Ackers, Proc. Natl. Acad. Sci. USA 81 (1984), 1093-1097. b) M. Straume and M. L. Johnson, Biochemistry 27 (1988), 1302-1310. c) G. K. Ackers and F. R. Smith, Annu. Rev. Biophys. Chem. 16 (1987), 583-609.
    30. L. Pauling et al., Science, 110 (1949), 543-548.
    31. G. B. Jameson and J. A. Ibers, Comments Inorg. Chem. 2 (1983), 97-126; in this see references to the original literature.
    32. Q. H. Gibson and M. H. Smith, Proc. Roy. Soc., Ser. B, Biol. Sci. 163 (1965), 206-214.
    33. a) T. Imamura, A. Riggs, and Q. H. Gibson, J. Biol. Chem. 247 (1972), 521-526. b) J. B. Wittenberg, C. A. Appleby, and B. A. Wittenberg, J. Biol. Chem. 247 (1972), 527-531.
    34. L. J. Parkhurst, Annu. Rev. Phys. Chem. 30 (1979), 503-546; in this see references to the original literature.
    35. a) M. P. Mims et al., J. Biol. Chem. 258 (1983), 14219-14232; in this see references to the original literature. b) J. S. Olson et al., Nature 336 (1988), 265-266.
    36. G. D. Armstrong and A. G. Sykes, Inorg. Chem. 25 (1986), 3135-3139.
    37. R. Lontie and R. Winters, in H. Sigel, ed., Metal Ions in Biological Systems, Dekker, 13 (1981), 229-258.
    38. a) M. Brunori et al., in Reference 13, 693-701. b) E. Antonini et al., Biophys. Chem. 18 (1983), 117-124.
    39. a. B. Richey, H. Decker, and S. J. Gill, Biochemistry 24 (1985), 109-117. b) M. Brunori et al., J. Mol. Biol. 153 (1981), 1111-1123. c) H. Decker et al., Biochemistry 27 (1988), 6901-6908.
    40. a) G. L. Woolery et al., J. Am. Chem. Soc. 106 (1984), 86-92. b) J. M. Brown et al., J. Am. Chem. Soc. 102 (1980), 4210-4216.
    41. M. S. Co. et al., J. Am. Chem. Soc. 103 (1981), 984-986.
    42. a) W. P. J. Gaykema et aI., Nature 309 (1984),23-29. b) W. P. J. Gaykema, A. Volbeda, and W. G. J. Hol, J. Mol. BioI. 187 (1985), 255-275. c) B. Linzen et al., Science 229 (1985), 519-524.
    43. a) H. A. DePhillips, Jr., Arch. Biochem. Biophys. 144 (1971), 122-126. b) D. E. Richardson, R. C. Reem, and E. I. Solomon, J. Am. Chem. Soc. 105 (1982), 7780-7781.
    44. D. J. A. de Waal and R. G. Wilkins, J. BioI. Chem. 251 (1976), 2339-2343.
    45. R. E. Stenkamp et al., Proc. Natl. Acad. Sci. USA 82 (1985), 713-716.
    46. a) R. E. Stenkamp, L. C. Sieker, and L. H. Jensen, J. Am. Chem. Soc. 106 (1984), 618-622. b) Ibid., J. Mol. Biol. 126 (1978), 457-466.
    47. S. Sheriff et al., Proc. Natl. Acad. Sci. USA 82 (1985), 1104-1107.
    48. S. Sheriff, W. A. Hendrickson, and J. L. Smith, J. Mol. Biol. 197 (1987), 273-296.
    49. H. P. Misra and I. Fridovich, J. Biol. Chem. 247 (1972), 6960-6962.
    50. W. J. Wallace, J. C. Maxwell, and W. S. Caughey, FEBS Lett. 43 (1974),33-36; Biochem. Biophys. Res. Comm. 57 (1974), 1104-1110.
    51. a) D. E. Hultquist, L. J. Sannes, and D. A. Juckett, Curr. Top. Cell. Regul. 24 (1984), 287-300. b) M. R. Mauk and A. G. Mauk, Biochemistry 21 (1982), 4730-4734.
    52. I. Fridovich, Acc. Chem. Res. 5 (1972), 321-326.
    53. D. T. Sawyer and J. S. Valentine, Acc. Chem. Res. 14 (1981), 393-400.
    54. I. Fridovich vs. D. T. Sawyer and J. S. Valentine, Acc. Chem. Res. 15 (1982), 200 (correspondence).
    55. W. Braun et al., J. Mol. Biol. 187 (1986), 125-129.
    56. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, Wiley, 4th ed., 1980.
    57. A. F. Wells, Structural Inorganic Chemistry, Oxford University Press, 5th ed., 1984.
    58. J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, Harper and Row, 3rd ed., 1983.
    59. S. A. Fairhurst and L. H. Sutcliffe, Prog. Biophys. Mol. Biol. 34 (1978), 1-79.
    60. B. K. Teo, EXAFS: Basic Principles and Data Analysis, Springer-Verlag, 1986.
    61. A. Bianconi et al., Phys. Rev. B 26 (1982), 6502-6508.
    62. Handbook of Chemistry and Physics, CRC Press, 68th ed., 1987-88, D151-D155.
    63. L. Vaska, Acc. Chem. Res. 9 (1976), 175-183; in this see references to the original literature.
    64. R. D. Jones, D. A. Summerville, and F. Basolo, Chem. Rev. 79 (1979), 139-179; in this see references to the original literature.
    65. W. R. Scheidt and Y. J. Lee, Structure and Bonding 64 (1987), 1-70; in this see references to the original literature.
    66. E. C. Niederhoffer, J. H. Timmons, and A. E. Martell, Chem. Rev. 84 (1984), 137-203; in this see references to the original literature.
    67. J. O. Alben et al., Biochemistry 7 (1968), 624-635.
    68. G. S. Hammond and C.-S. Wu, Adv. Chem. Ser. 77 (1968), 186-207.
    69. D.-H. Chin et al., J. Am. Chem. Soc. 99 (1977), 5486-5488.
    70. J. E. Penner-Hahn et al., J. Am. Chem. Soc. 108 (1986), 7819-7825.
    71. A. L. Balch et al., J. Am. Chem. Soc. 106 (1984), 7779-7785.
    72. J. P. Collman, Acc. Chem. Res. 10 (1977), 265-272.
    73. J. H. Wang, J. Am. Chem. Soc. 80 (1958), 3168-3169.
    74. E.-I. Ochiai, Inorg. Nucl. Chem. Lett. 10 (1974), 453-457.
    75. C. C. Winterbourn and J. K. French, Biochem. Soc. Trans. 5 (1977), 1480-1481; J. K. French, C. C. Winterbourn, and R. W. Carrell, Biochem. J. 173 (1978), 19-26.
    76. B. C. Antanaitis and P. Aisen, Adv. Inorg. Biochem. 5 (1983), 111-136.
    77. B.-M. Sjöberg and S. A. Graslund, Adv. Inorg. Biochem. 5 (1983), 87-110.
    78. a) H. Toftlund et al., J. Chem. Soc. Chem. Comm. (1986), 191-192. b) M. P. Woodland and H. Dalton, J. Biol. Chem. 259 (1984), 53-59.
    79. a) J. LeGall et al., Biochemistry 27 (1988), 1636-1642. b) E. C. Theil, Adv. Inorg. Biochem. 5 (1983), 1-38.
    80. K. S. Murray, Coord. Chem. Rev. 12 (1974), 1-35.
    81. P. Gomez-Romero, G. C. DeFotis, and G. B. Jameson, J. Am. Chem. Soc. 108 (1986), 851-853.
    82. W. H. Armstrong et al., J. Am. Chem. Soc. 106 (1984), 3653-3667.
    83. C. C. Ou et al., J. Am. Chem. Soc. 100 (1978), 2053-2057.
    84. W. M. Reiff, G. J. Long, and W. A. Baker, Jr., J. Am. Chem. Soc. 90 (1968), 6347-6351.
    85. J. A. Bertrand and P. G. Eller, Inorg. Chem. 13 (1974), 927-934.
    86. B. F. Anderson et al., Nature 262 (1976), 722-724.
    87. a) R. S. Czernuszewicz, J. E. Sheats, and T. G. Spiro, Inorg. Chem. 26 (1987), 2063-2067. b) B. A. Averill et al., J. Am. Chem. Soc. 109 (1987), 3760-3767.
    88. a). P. Chaudhuri et al., Angew. Chem. Intl. Ed. Engl. 24 (1985), 778-779. b) J. A. R. Hartman et al., J. Am. Chem. Soc. 109 (1987), 7387-7396.
    89. C. Bull, G. J. McClune, and J. A. Fee, J. Am. Chem. Soc. 105 (1983), 5290-5300.
    90. a) R. E. Hester and E. M. Nour, J. Raman Spectrosc. 11 (1981), 35-38. b) S. Ahmad et al., Inorg. Chem. 27 (1988), 2230-2233.
    91. W. R. Scheidt and C. A. Reed, Chem. Rev. 81 (1981), 543-555; in this see references to the original literature.
    92. L. Pauling and C. D. Coryell, Proc. Natl. Acad. Sci. USA 22 (1936), 210-216.
    93. M. Cerdonio et al., Proc. Natl. Acad. Sci. USA 74 (1977), 398-400.
    94. Z. S. Herman and G. H. Loew, J. Am. Chem. Soc. 102 (1980), 1815-1821.
    95. A. Dedieu, M.-M. Rohmer, and A. Veillard, in B. Pullman and N. Goldblum, eds., Metal Ligand Interactions in Organic Chemistry and Biochemistry, Part 2, Reidel, 1977, 101-130.
    96. W. A. Goddard III and B. D. Olafson, Ann. N. Y. Acad. Sci. 367 (1981), 419-433.
    97. B. Boso et al., Biochim. Biophys. Acta 791 (1984), 244-251.
    98. J. P. Savicki, G. Lang, and M. Ikeda-Saito, Proc. Natl. Acad. Sci. USA 81 (1984), 5417-5419.
    99. P. E. Ellis, Jr., R. D. Jones, and F. Basolo, J. Chem. Soc. Chem. Comm. (1980), 54-55.
    100. M. Rougee and D. Brault, Biochemistry 14 (1975), 4100-4106.
    101. J. S. Thompson, T. J. Marks, and J. A. Ibers, J. Am. Chem. Soc. 101 (1979), 4180-4192.
    102. M. G. Burnett et al., J. Chem. Soc. Chem. Comm. (1980), 829-831; M.G. Burnett, V. McKee, and S. M. Nelson, loc. cit. (1980), 599-601.
    103. a). J. S. Thompson, J. Am. Chem. Soc. 106 (1984), 8308-8309. b) C. L. Merrill et al., J. Chem. Soc., Dalton Trans. (1984), 2207-2221. c) L. Casella, M. S. Silver, and J. A. Ibers, Inorg. Chem. 23 (1984), 1409-1418. d) Y. Nishida et al., Inorg. Chim. Acta 54 (1981), L103-L104. e) K. D. Karlin et al., J. Am. Chem. Soc. 110 (1988), 1196-1207. f) R. R. Jacobson et al., J. Am. Chem. Soc. 110 (1988), 3690-3692. g) N. Kitajima et al., J. Am. Chem. Soc. 114 (1992), 1277-1291.
    104. a) F. Basolo, B. M. Hoffman, and J. A. Ibers, Acc. Chem. Res. 8 (1975), 384-392; in this see references to the original literature. b) G. A. Rodley and W. T. Robinson, Nature 235 (1972), 438-439.
    105. T. D. Smith and J. R. Pilbrow, Coord. Chem. Rev. 39 (1981), 295-383; in this see references to the original literature, and a critical reanalysis of results in References 107a and 197.
    106. B. M. Hoffman and D. H. Petering, Proc. Natl. Acad. Sci. USA 67 (1970), 637-643.
    107. a) B. S. Tovrog, D. J. Kitko, and R. S. Drago, J. Am. Chem. Soc. 98 (1976), 5144-5153. b) R. S. Drago and B. B. Corden, Acc. Chem. Res. 13 (1980), 353-360.
    108. A. W. Addison and S. Burman, Biochim. Biophys. Acta 828 (1985), 362-368.
    109. L. M. Proniewicz, K. Nakamoto, and J. R. Kincaid, J. Am. Chem. Soc. 110 (1988), 4541-4545.
    110. J. L. Hoard, in K. M. Smith, ed., Porphyrins and Metalloporphyrins, Elsevier, 1975, 317-380.
    111. W. R. Scheidt, Acc. Chem. Res. 10 (1977), 339-345.
    112. R. G. Little and J. A. Ibers, J. Am. Chem. Soc. 96 (1974), 4452-4463.
    113. J. L. Hoard and W. R. Scheidt, Proc. Natl. Acad. Sci. USA 70 (1973), 3919-3922, and 71 (1974), 1578.
    114. S. E. Peterson-Kennedy et al., J. Am. Chem. Soc. 108 (1986), 1739-1746.
    115. N. V. Blough and B. M. Hoffman, J. Am. Chem. Soc. 104 (1982), 4247-4250.
    116. a) D. R. Paulson et al., J. Biol. Chem. 254 (1979), 7002-7006. b) T. S. Srivastava, Biochim. Biophys. Acta 491 (1977), 599-604.
    117. R. B. Frydman and B. Frydman, Acc. Chem. Res. 20 (1987), 250-256.
    118. S.-M. Peng and J. A. Ibers, J. Am. Chem. Soc. 98 (1976), 8032-8036.
    119. V. L. Goedken and S.-M. Peng, J. Am. Chem. Soc. 96 (1974), 7826-7827.
    120. V. L. Goedken et al., J. Am. Chem. Soc. 98 (1976), 8391-8400.
    121. a) D. H. Busch et al., Proc. Natl. Acad. Sci. USA 78 (1981), 5919-5923. b) K. Kim et al., J. Am. Chem. Soc. 111 (1989), 403-405. c) X.-Y. Li and T. G. Spiro, J. Am. Chem. Soc. 110 (1988), 6024-6033. d) K. Kim and J. A. Ibers, J. Am. Chem. Soc. 113 (1991), 6077-6081.
    122. J. Kuriyan et al., J. Mol. Biol. 192 (1986), 133-154.
    123. J. M. Baldwin, J. Mol. Biol. 136 (1980), 103-128.
    124. E. J. Heidner, R. C. Ladner, and M. F. Perutz, J. Mol. Biol. 104 (1976), 707-722.
    125. a) J. C. Norvell, A. C. Nunes, and B. P. Schoenborn, Science 190 (1975), 568-570. b) J. C. Hanson and B. P. Schoenborn, J. Mol. Biol. 153 (1981), 117-146.
    126. E. A. Padlan and W. E. Love, J. Biol. Chem. 249 (1974), 4067-4078.
    127. A. Bianconi et al., Nature 318 (1985), 685-687.
    128. A. Bianconi et al., Biochim. Biophys. Acta 831 (1985), 114-119.
    129. B. B. Wayland, J. V. Minkiewicz, and M. E. Abd-Elmageed, J. Am. Chem. Soc. 96 (1974),2795- 2801.
    130. B. S. Tovrog and R. S. Drago, J. Am. Chem. Soc. 96 (1974), 6765-6766.
    131. B. M. Hoffman, T. Szymanski, and F. Basolo, J. Am. Chem. Soc. 97 (1975), 673-674.
    132. W. R. Scheidt and D. K. Geiger, lnorg. Chem. 21 (1982), 1208-1211.
    133. J. C. Maxwell and W. S. Caughey, Biochemistry 15 (1976), 388-396.
    134. R. C. C. St. George and L. Pauling, Science 114 (1951), 629-634.
    135. G. B. Jameson and J. A. Ibers, lnorg. Chem. 18 (1979), 1200-1208.
    136. J.-M. Bassett et al., J. Chem. Soc. Chem. Comm. (1977), 853-854.
    137. L. Pauling, Nature 203 (1964), 182-183.
    138. L. S. Liebeskind et al., J. Am. Chem. Soc. 100 (1978), 7061-7063.
    139. D. Mansuy et al., J. Am. Chem. Soc. 105 (1983), 455-463.
    140. T. B. Freedman, J. S. Loehr, and T. M. Loehr, J. Am. Chem. Soc. 98 (1976), 2809-2815.
    141. T. J. Thamann, J. S. Loehr, and T. M. Loehr, J. Am. Chem. Soc. 99 (1977), 4187-4189.
    142. D. M. Kurtz, Jr., D. F. Shriver, and J. M. Klotz, J. Am. Chem. Soc. 98 (1976), 5033-5035.
    143. L. Y. Fager and J. O. Alben, Biochemistry 11 (1972), 4786-4792.
    144. M. Munakata, S. Kitagawa, and K. Goto, J. lnorg. Biochem. 16 (1982), 319-322.
    145. R. R. Gay and E. I. Solomon, J. Am. Chem. Soc. 100 (1978), 1972-1973.
    146. A. K. Shiernke, T. M. Loehr, and J. Sanders-Loehr, J. Am. Chem. Soc. 108 (1986), 2437-2443.
    147. a) J. W. Dawson et al., Biochemistry 11 (1972), 461-465. b) M. J. Maroney et al., J. Am Chem. Soc. 108 (1986), 6871-6879.
    148. J. M. Nocek et al., J. Am. Chem. Soc. 107 (1985), 3382-3384.
    149. C. H. Barlow et al., Biochem. Biophys. Res. Comm. 55 (1973), 91-95.
    150. L. Pauling, Stanford Med. Bull. 6 (1948), 215-222.
    151. J. J. Weiss, Nature 202 (1964), 83-84.
    152. J. S. Griffith, Proc. Roy. Soc. A 235 (1956), 23-36.
    153. H. B. Gray, Adv. Chem. Ser. 100 (1971), 365-389.
    154. T. G. Spiro, in A. B. P. Lever and H. B. Gray, eds., Iron Porphyrins, Addison-Wesley (1983), Part II, 89-159.
    155. B. B. Wayland and L. W. Olson, J. Am Chem. Soc. 96 (1974), 6037-6041.
    156. K. Wieghardt, K. Pohl, and W. Gebert, Angew. Chem. Intl. Ed. Engl. 22 (1983), 727.
    157. P. Gomez-Romero et al., J. Am. Chem. Soc. 110 (1988), 1988-1990.
    158. J. A. Ibers and R. H. Holm, Science 209 (1980), 223-235.
    159. A. Levy and J. M. Rifkind, Biochemistry 24 (1985), 6050-6054.
    160. K. S. Suslick and M. M. Fox, J. Am. Chem. Soc. 105 (1983), 3507-3510.
    161. a) M. Momenteau et al., J. Chem. Soc. Chem. Comm. (1983), 962-964. b) J. Mispelter et al., J. Am. Chem. Soc. 105 (1983), 5165-5166.
    162. N. Herron et al., J. Am. Chem. Soc. 105 (1983), 6585-6596.
    163. T. G. Traylor, Acc. Chem. Res. 14 (1981), 102-109.
    164. T. G. Traylor, N. Koga, and L. A. Deardurff, J. Am Chem. Soc. 107 (1985), 6504-6510.
    165. J. P. Collman et al., J. Am. Chem. Soc. 105 (1983), 3052-3064.
    166. J. Almog et al., J. Am. Chem. Soc. 97 (1975), 226-227.
    167. M. Ikeda-Saito M. Brunori, and T. Yonetani, Biochim. Biophys. Acta 533 (1978), 173-180.
    168. M. Ikeda-Saito et al., J. Biol. Chem. 252 (1977), 4882-4887.
    169. G. B. Jameson, W. T. Robinson, and J. A. Ibers, in C. Ho, ed., Hemoglobin and Oxygen Binding, Elsevier, 1982, 25-35.
    170. T. Yonetani, H. Yamamoto, and G. V. Woodrow III, J. Biol. Chem. 249 (1974), 682-690.
    171. G. L. Woolery et al., J. Am. Chem. Soc. 107 (1985), 2370-2373.
    172. G. B. Jameson et al., J. Am. Chem. Soc. 102 (1980), 3224-3237.
    173. W. Byers et al., Inorg. Chem. 25 (1986), 4767-4774.
    174. M. M. Doeff, D. A. Sweigart, and P. O'Brien, Inorg. Chem. 22 (1983), 851-852.
    175. R. S. Drago, J. P. Cannady, and K. A. Leslie, J. Am. Chem. Soc. 102 (1980), 6014-6019.
    176. G. B. Jameson and R. S. Drago, J. Am. Chem. Soc. 107 (1985), 3017-3020.
    177. F. A. Walker and J. Bowen, J. Am. Chem. Soc. 107 (1985), 7632-7635.
    178. T. Yonetani, H. Yamamoto, and T. lizuka, J. Biol. Chem. 249 (1974), 2168-2174.
    179. T. Kitagawa et al., Nature 298 (1982), 869-871.
    180. J. E. Linard et al.. J. Am. Chem. Soc. 102 (1980), 1896-1904.
    181. a) T. Takano, J. Mol. Biol. 110 (1977), 569-584. b) Deoxymyoglobin at 1.6 Å resolution has been determined (S. E. V. Phillips). See Reference 182.
    182. G. Fermi et al., J. Mol. Biol. 175 (1984), 159-174.
    183. W. Steigemann and E. Weber, J. Mol. Biol. 127 (1979), 309-338.
    184. G. Fermi et al., J. Mol. Biol. 155 (1982), 495-505.
    185. E. A. Padlan, W. A. Eaton, and T. Yonetani, J. Biol. Chem. 250 (1975), 7069-7073.
    186. J. Baldwin and C. Chothia, J. Mol. Biol. 129 (1979), 175-220.
    187. G. B. Jameson et al., Inorg. Chem. 17 (1978), 850-857.
    188. S. E. V. Phillips, J. Mol. Biol. 142 (1980), 531-554.
    189. S. E. V. Phillips and B. P. Schoenborn, Nature 292 (1981), 81-82.
    190. B. Shaanan, J. Mol. Biol. 171 (1983), 31-59.
    191. a) A. Brzozowski et al., Nature 307 (1984), 74-76. b) Z. Derewenda et al., J. Mol. Biol. 211 (1990), 515-519. c) R. Liddington et al., Nature 331 (1988), 725-728. d) B. Luisi et al., J. Mol. Biol. 214 (1990), 7-14.
    192. K. Nagai et al., Nature 329 (1987), 858-860.
    193. A. Dedieu et al., J. Am. Chem. Soc. 98 (1976), 3717-3718.
    194. a) J. C. Stevens et al., J. Am. Chem. Soc. 102 (1980), 3283-3285. b) P. J. Jackson et al., Inorg. Chem. 25 (1986), 4015-4020.
    195. L. Powers et al., Biochemistry 23 (1984), 5519-5523.
    196. a) D. Braunstein et al., Proc. Natl. Acad. Sci. USA 85 (1988), 8497-8501. b) P. Ormos et al., Proc. Natl. Acad. Sci. USA 85 (1988), 8492-8496. c) J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 85 (1988), 5062- 5066.
    197. J. C. W. Chien and L. C. Dickinson, Proc. Natl. Acad. Sci. USA 69 (1972), 2783-2787; L. C. Dickinson and J. C. W. Chien, Proc. Natl. Acad. Sci. USA 77 (1980), 1235-1239.
    198. G. A. Petsko et al., in P. L. Dutton, J. S. Leigh, and A. Scarpa, eds., Frontiers in Bioenergetics, Academic Press, 1978, 1011-1017.
    199. E. W. Findsen et al., Science 229 (1985), 661-665.
    200. K. Nagai and T. Kitagawa, Proc. Natl. Acad. Sci. USA 77 (1980), 2033-2037.
    201. a) G. B. Jameson and J. A. Ibers, J. Am. Chem. Soc. 102 (1980), 2823-2831. b) M. Sabat and J. A. Ibers, J. Am. Chem. Soc. 104 (1982), 3715-3721.
    202. J. W. Sparapany et al., J. Am. Chem. Soc. 110 (1988), 4559-4564.
    203. A. Arnone et al., J. Mol. Biol. 188 (1986),693-706.
    204. É. G. Arutyunyan et al., Sov. Phys. Crystallogr. 25 (1980), 43-58.
    205. D. L. Ollis et al., Austral. J. Chem. 36 (1983), 451-468.
    206. a) K. Shikama and A. Matsuoka, Biochemistry 25 (1986), 3898-3903. b) M. Bolognesi et al., J. Mol. Biol. 213 (1990), 621-625.
    207. S. J. Lippard, Angew. Chem. Intl. Ed. Engl. 27 (1988), 344-361.
    208. M. F. Perutz and F. S. Mathews, J. Mol. Biol. 21 (1966), 199-202.
    209. J. C. Kendrew et al., Nature 185 (1960), 422-427.
    210. GBJ gratefully acknowledges support from the National Institutes of Health (DK 37702) and sabbatical-leave support from the Department of Chemistry and Biochemistry, Massey University, Palmerston North, New Zealand. JAI is pleased to acknowledge the support of the National Institutes of Health (HL 13157).

    Abbreviations

    1-MeIm 1-methylimidazole
    1,2-Me2Im 1, 2-dimethylimidazole
    2-MeIm 2-methylimidazole
    2,3-DPG 2,3-diphosphoglycerate
    3,4-Me2-Py 3,4-dimethylpyridine
    4-t-Bu-Py 4-t-butylpyridine
    4-CN-Py 4-cyanopyridine
    4-NH2-Py 4-aminopyridine
    ai activity of component i
    Arg arginine
    B general axial base ligand that binds to a metalloporphyrin
    Ch chlorocruorin
    E1, E-1 activation energy
    EDTA ethylenediaminetetraacetic acid
    electrochemical potential at unit activity and fugacity
    E°' electrochemical potential at physiological pH (7.4) and unit pressure (1 atm = 760 Torr)
    Er ertythrocruorin
    EtOH ethanol
    EXAFS extended x-ray absorption fine structure
    G Gibbs free energy
    H enthalpy
    H2(6,6-CP) cyclophane-strapped porphyrin (see Figure 4.23)
    H2(Poc-PF) pocket picket-fence porphyrin
    H2Amide-Im basket-handle porphyrin: imidazole base covalently attached to porphyrin with amide straps; amide straps on other side of porphyrin (see Figure 4.23)
    H2Bis-Poc meso-tetrakis (2,4,6-triphenylphenyl) porphyrin
    H2bzacen N,N-ethylenebis (benzoylacetoninime)
    H2C2Cap capped porphyrin; see Figure 4.23
    H2Ether-Py basket-handle porphyrin: as for H2Amide-Im except ether straps and pyridine base (see Figure 4.23)
    H2MPIX-Im mesoporphyrin IX dimethylester with imidazole covalently attached to porphyrin (see Figure 4.23)
    H2PF picket fence porphyrin, meso-tetrakis (\(\alpha\),\(\alpha\),\(\alpha\),\(\alpha\)-o-pivalamidephenyl) porphyrin (see Figure 4.23)
    H2PPIX protoporphyrin IX dimethylester
    H2PPIX-Im protoporphyrin IX dimethylester with imidazole covalently attached to porphyrin (see Figure 4.23)
    Hb hemoglobin
    HbA human adult hemoglobin
    HbF human fetal hemoglobin
    Hc hemocyanin
    His histidine
    His203 position on polypeptide chain (203) of a histidine residue
    Hr hemerythrin
    Im imidazole
    k rate constant
    Kp, Kc equilibrium constant: concentration of gas expressed in terms of pressure (P) and molarity (M), respectively
    Li allosteric constant: equilibrium constant for conformational change of protein with i ligands bound
    M general metalloprophyrinato species
    M molarity, moles/L
    M general metal complex
    Mb myoglobin
    Me methyl group
    met oxidized (e.g. met Hb)
    OEP 2,3,7,8,12,13,17,18-octaethylporphyrinato
    P pressure, usually in Torr or mm Hg
    THF tetrahydrofuran
    TPP 5,10,15,20-tetraphenylporphyrinato

    4.21: Ch. 4 References and Abbreviations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?