Skip to main content
Chemistry LibreTexts

19.1: Introduction

  • Page ID
    349768
    • Anonymous
    • LibreTexts
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In oxidation–reduction (redox) reactions, electrons are transferred from one species (the reductant) to another (the oxidant). This transfer of electrons provides a means for converting chemical energy to electrical energy or vice versa. The study of the relationship between electricity and chemical reactions is called electrochemistry (the study of the relationship between electricity and chemical reactions., an area of chemistry we introduced in Chapter 8 and Chapter 9). In this chapter, we describe electrochemical reactions in more depth and explore some of their applications.

    In the first three sections, we review redox reactions; describe how they can be used to generate an electrical potential, or voltage; and discuss factors that affect the magnitude of the potential. We then explore the relationships among the electrical potential, the change in free energy, and the equilibrium constant for a redox reaction, which are all measures of the thermodynamic driving force for a reaction. Finally, we examine two kinds of applications of electrochemical principles: (1) those in which a spontaneous reaction is used to provide electricity and (2) those in which electrical energy is used to drive a thermodynamically nonspontaneous reaction. By the end of this chapter, you will understand why different kinds of batteries are used in cars, flashlights, cameras, and portable computers; how rechargeable batteries operate; and why corrosion occurs and how to slow—if not prevent—it. You will also discover how metal objects can be plated with silver or chromium for protection; how silver polish removes tarnish; and how to calculate the amount of electricity needed to produce aluminum, chlorine, copper, and sodium on an industrial scale.

    ae04f36c0ee23bf0beb5f1069d60783b.jpg

    A view from the top of the Statue of Liberty, showing the green patina coating the statue. The patina is formed by corrosion of the copper skin of the statue, which forms a thin layer of an insoluble compound that contains copper(II), sulfate, and hydroxide ions.

    Contributors

    • Anonymous

    Modified by Joshua B. Halpern


    This page titled 19.1: Introduction is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Anonymous.

    • Was this article helpful?