# M4: Spherical Harmonics

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Represented in a system of spherical coordinates, Laplace's spherical harmonics $$Y_l^m$$ are a specific set of spherical harmonics that forms an orthogonal system. Spherical harmonics are important in many theoretical and practical applications, particularly in the computation of atomic orbital electron configurations

### l = 0

$Y_{0}^{0}(\theta,\varphi)={1\over 2}\sqrt{1\over \pi}$

### l = 1

\begin{align} Y_{1}^{-1}(\theta,\varphi) & = {1\over 2}\sqrt{3\over 2\pi}\cdot e^{-i\varphi}\cdot\sin\theta\quad = {1\over 2}\sqrt{3\over 2\pi}\cdot{(x-iy)\over r} \\ Y_{1}^{0}(\theta,\varphi) & = {1\over 2}\sqrt{3\over \pi}\cdot\cos\theta\quad \quad = {1\over 2}\sqrt{3\over \pi}\cdot{z\over r} \\ Y_{1}^{1}(\theta,\varphi) & = {-1\over 2}\sqrt{3\over 2\pi}\cdot e^{i\varphi}\cdot\sin\theta\quad = {-1\over 2}\sqrt{3\over 2\pi}\cdot{(x+iy)\over r} \end{align}

### l = 2

$Y_{2}^{-2}(\theta,\varphi)={1\over 4}\sqrt{15\over 2\pi}\cdot e^{-2i\varphi}\cdot\sin^{2}\theta\quad={1\over 4}\sqrt{15\over 2\pi}\cdot{(x - iy)^2 \over r^{2}}$

$Y_{2}^{-1}(\theta,\varphi)={1\over 2}\sqrt{15\over 2\pi}\cdot e^{-i\varphi}\cdot\sin\theta\cdot\cos\theta\quad={1\over 2}\sqrt{15\over 2\pi}\cdot{(x - iy)z \over r^{2}}$

$Y_{2}^{0}(\theta,\varphi)={1\over 4}\sqrt{5\over \pi}\cdot(3\cos^{2}\theta-1)\quad={1\over 4}\sqrt{5\over \pi}\cdot{(2z^{2}-x^{2}-y^{2})\over r^{2}}$

$Y_{2}^{1}(\theta,\varphi)={-1\over 2}\sqrt{15\over 2\pi}\cdot e^{i\varphi}\cdot\sin\theta\cdot\cos\theta\quad={-1\over 2}\sqrt{15\over 2\pi}\cdot{(x + iy)z \over r^{2}}$

$Y_{2}^{2}(\theta,\varphi)={1\over 4}\sqrt{15\over 2\pi}\cdot e^{2i\varphi}\cdot\sin^{2}\theta\quad={1\over 4}\sqrt{15\over 2\pi}\cdot{(x + iy)^2 \over r^{2}}$

### l = 3

$Y_{3}^{-3}(\theta,\varphi)= {1\over 8}\sqrt{35\over \pi}\cdot e^{-3i\varphi}\cdot\sin^{3}\theta\quad= {1\over 8}\sqrt{35\over \pi}\cdot{(x - iy)^{3}\over r^{3}}$
$Y_{3}^{-2}(\theta,\varphi)= {1\over 4}\sqrt{105\over 2\pi}\cdot e^{-2i\varphi}\cdot\sin^{2}\theta\cdot\cos\theta\quad= {1\over 4}\sqrt{105\over 2\pi}\cdot{(x- iy)^2 z \over r^{3}}$
$Y_{3}^{-1}(\theta,\varphi)={1\over 8}\sqrt{21\over \pi}\cdot e^{-i\varphi}\cdot\sin\theta\cdot(5\cos^{2}\theta-1)\quad={1\over 8}\sqrt{21\over \pi}\cdot{(x - iy)(4z^2- x^2 - y^2)\over r^{3}}$
$Y_{3}^{0}(\theta,\varphi)={1\over 4}\sqrt{7\over \pi}\cdot(5\cos^{3}\theta-3\cos\theta)\quad={1\over 4}\sqrt{7\over \pi}\cdot{z(2z^2 - 3x^2 - 3y^2)\over r^{3}}$
$Y_{3}^{1}(\theta,\varphi)={-1\over 8}\sqrt{21\over \pi}\cdot e^{i\varphi}\cdot\sin\theta\cdot(5\cos^{2}\theta-1)\quad={-1\over 8}\sqrt{21\over \pi}\cdot{(x + iy) (4z^2 - x^2 - y^2) \over r^{3}}$
$Y_{3}^{2}(\theta,\varphi)={1\over 4}\sqrt{105\over 2\pi}\cdot e^{2i\varphi}\cdot\sin^{2}\theta\cdot\cos\theta\quad={1\over 4}\sqrt{105\over 2\pi}\cdot{(x + iy)^2 z \over r^{3}}$
$Y_{3}^{3}(\theta,\varphi)={-1\over 8}\sqrt{35\over \pi}\cdot e^{3i\varphi}\cdot\sin^{3}\theta\quad={-1\over 8}\sqrt{35\over \pi}\cdot{(x + iy)^3\over r^{3}}$

### l = 4

$Y_{4}^{-4}(\theta,\varphi)={3\over 16}\sqrt{35\over 2\pi}\cdot e^{-4i\varphi}\cdot\sin^{4}\theta= \frac{3}{16} \sqrt{\frac{35}{2 \pi}} \cdot \frac{(x - i y)^4}{r^4}$
$Y_{4}^{-3}(\theta,\varphi)={3\over 8}\sqrt{35\over \pi}\cdot e^{-3i\varphi}\cdot\sin^{3}\theta\cdot\cos\theta= \frac{3}{8} \sqrt{\frac{35}{\pi}} \cdot \frac{(x - i y)^3 z}{r^4}$
$Y_{4}^{-2}(\theta,\varphi)={3\over 8}\sqrt{5\over 2\pi}\cdot e^{-2i\varphi}\cdot\sin^{2}\theta\cdot(7\cos^{2}\theta-1)= \frac{3}{8} \sqrt{\frac{5}{2 \pi}} \cdot \frac{(x - i y)^2 \cdot (7 z^2 - r^2)}{r^4}$
$Y_{4}^{-1}(\theta,\varphi)={3\over 8}\sqrt{5\over \pi}\cdot e^{-i\varphi}\cdot\sin\theta\cdot(7\cos^{3}\theta-3\cos\theta)= \frac{3}{8} \sqrt{\frac{5}{\pi}} \cdot \frac{(x - i y) \cdot z \cdot (7 z^2 - 3 r^2)}{r^4}$
$Y_{4}^{0}(\theta,\varphi)={3\over 16}\sqrt{1\over \pi}\cdot(35\cos^{4}\theta-30\cos^{2}\theta+3)= \frac{3}{16} \sqrt{\frac{1}{\pi}} \cdot \frac{(35 z^4 - 30 z^2 r^2 + 3 r^4)}{r^4}$
$Y_{4}^{1}(\theta,\varphi)={-3\over 8}\sqrt{5\over \pi}\cdot e^{i\varphi}\cdot\sin\theta\cdot(7\cos^{3}\theta-3\cos\theta)= \frac{- 3}{8} \sqrt{\frac{5}{\pi}} \cdot \frac{(x + i y) \cdot z \cdot (7 z^2 - 3 r^2)}{r^4}$
$Y_{4}^{2}(\theta,\varphi)={3\over 8}\sqrt{5\over 2\pi}\cdot e^{2i\varphi}\cdot\sin^{2}\theta\cdot(7\cos^{2}\theta-1)= \frac{3}{8} \sqrt{\frac{5}{2 \pi}} \cdot \frac{(x + i y)^2 \cdot (7 z^2 - r^2)}{r^4}$
$Y_{4}^{3}(\theta,\varphi)={-3\over 8}\sqrt{35\over \pi}\cdot e^{3i\varphi}\cdot\sin^{3}\theta\cdot\cos\theta= \frac{- 3}{8} \sqrt{\frac{35}{\pi}} \cdot \frac{(x + i y)^3 z}{r^4}$
$Y_{4}^{4}(\theta,\varphi)={3\over 16}\sqrt{35\over 2\pi}\cdot e^{4i\varphi}\cdot\sin^{4}\theta= \frac{3}{16} \sqrt{\frac{35}{2 \pi}} \cdot \frac{(x + i y)^4}{r^4}$

### l = 5

$Y_{5}^{-5}(\theta,\varphi)={3\over 32}\sqrt{77\over \pi}\cdot e^{-5i\varphi}\cdot\sin^{5}\theta$
$Y_{5}^{-4}(\theta,\varphi)={3\over 16}\sqrt{385\over 2\pi}\cdot e^{-4i\varphi}\cdot\sin^{4}\theta\cdot\cos\theta$
$Y_{5}^{-3}(\theta,\varphi)={1\over 32}\sqrt{385\over \pi}\cdot e^{-3i\varphi}\cdot\sin^{3}\theta\cdot(9\cos^{2}\theta-1)$
$Y_{5}^{-2}(\theta,\varphi)={1\over 8}\sqrt{1155\over 2\pi}\cdot e^{-2i\varphi}\cdot\sin^{2}\theta\cdot(3\cos^{3}\theta-\cos\theta)$
$Y_{5}^{-1}(\theta,\varphi)={1\over 16}\sqrt{165\over 2\pi}\cdot e^{-i\varphi}\cdot\sin\theta\cdot(21\cos^{4}\theta-14\cos^{2}\theta+1)$
$Y_{5}^{0}(\theta,\varphi)={1\over 16}\sqrt{11\over \pi}\cdot(63\cos^{5}\theta-70\cos^{3}\theta+15\cos\theta)$
$Y_{5}^{1}(\theta,\varphi)={-1\over 16}\sqrt{165\over 2\pi}\cdot e^{i\varphi}\cdot\sin\theta\cdot(21\cos^{4}\theta-14\cos^{2}\theta+1)$
$Y_{5}^{2}(\theta,\varphi)={1\over 8}\sqrt{1155\over 2\pi}\cdot e^{2i\varphi}\cdot\sin^{2}\theta\cdot(3\cos^{3}\theta-\cos\theta)$
$Y_{5}^{3}(\theta,\varphi)={-1\over 32}\sqrt{385\over \pi}\cdot e^{3i\varphi}\cdot\sin^{3}\theta\cdot(9\cos^{2}\theta-1)$
$Y_{5}^{4}(\theta,\varphi)={3\over 16}\sqrt{385\over 2\pi}\cdot e^{4i\varphi}\cdot\sin^{4}\theta\cdot\cos\theta$
$Y_{5}^{5}(\theta,\varphi)={-3\over 32}\sqrt{77\over \pi}\cdot e^{5i\varphi}\cdot\sin^{5}\theta$

### l = 6

$Y_{6}^{-6}(\theta,\varphi)={1\over 64}\sqrt{3003\over \pi}\cdot e^{-6i\varphi}\cdot\sin^{6}\theta$
$Y_{6}^{-5}(\theta,\varphi)={3\over 32}\sqrt{1001\over \pi}\cdot e^{-5i\varphi}\cdot\sin^{5}\theta\cdot\cos\theta$
$Y_{6}^{-4}(\theta,\varphi)={3\over 32}\sqrt{91\over 2\pi}\cdot e^{-4i\varphi}\cdot\sin^{4}\theta\cdot(11\cos^{2}\theta-1)$
$Y_{6}^{-3}(\theta,\varphi)={1\over 32}\sqrt{1365\over \pi}\cdot e^{-3i\varphi}\cdot\sin^{3}\theta\cdot(11\cos^{3}\theta-3\cos\theta)$
$Y_{6}^{-2}(\theta,\varphi)={1\over 64}\sqrt{1365\over \pi}\cdot e^{-2i\varphi}\cdot\sin^{2}\theta\cdot(33\cos^{4}\theta-18\cos^{2}\theta+1)$
$Y_{6}^{-1}(\theta,\varphi)={1\over 16}\sqrt{273\over 2\pi}\cdot e^{-i\varphi}\cdot\sin\theta\cdot(33\cos^{5}\theta-30\cos^{3}\theta+5\cos\theta)$
$Y_{6}^{0}(\theta,\varphi)={1\over 32}\sqrt{13\over \pi}\cdot(231\cos^{6}\theta-315\cos^{4}\theta+105\cos^{2}\theta-5)$
$Y_{6}^{1}(\theta,\varphi)={-1\over 16}\sqrt{273\over 2\pi}\cdot e^{i\varphi}\cdot\sin\theta\cdot(33\cos^{5}\theta-30\cos^{3}\theta+5\cos\theta)$
$Y_{6}^{2}(\theta,\varphi)={1\over 64}\sqrt{1365\over \pi}\cdot e^{2i\varphi}\cdot\sin^{2}\theta\cdot(33\cos^{4}\theta-18\cos^{2}\theta+1)$
$Y_{6}^{3}(\theta,\varphi)={-1\over 32}\sqrt{1365\over \pi}\cdot e^{3i\varphi}\cdot\sin^{3}\theta\cdot(11\cos^{3}\theta-3\cos\theta)$
$Y_{6}^{4}(\theta,\varphi)={3\over 32}\sqrt{91\over 2\pi}\cdot e^{4i\varphi}\cdot\sin^{4}\theta\cdot(11\cos^{2}\theta-1)$
$Y_{6}^{5}(\theta,\varphi)={-3\over 32}\sqrt{1001\over \pi}\cdot e^{5i\varphi}\cdot\sin^{5}\theta\cdot\cos\theta$
$Y_{6}^{6}(\theta,\varphi)={1\over 64}\sqrt{3003\over \pi}\cdot e^{6i\varphi}\cdot\sin^{6}\theta$"mwe-math-fallback-png-inline tex"

### l = 7

$Y_{7}^{-7}(\theta,\varphi)={3\over 64}\sqrt{715\over 2\pi}\cdot e^{-7i\varphi}\cdot\sin^{7}\theta$
$Y_{7}^{-6}(\theta,\varphi)={3\over 64}\sqrt{5005\over \pi}\cdot e^{-6i\varphi}\cdot\sin^{6}\theta\cdot\cos\theta$
$Y_{7}^{-5}(\theta,\varphi)={3\over 64}\sqrt{385\over 2\pi}\cdot e^{-5i\varphi}\cdot\sin^{5}\theta\cdot(13\cos^{2}\theta-1)$
$Y_{7}^{-4}(\theta,\varphi)={3\over 32}\sqrt{385\over 2\pi}\cdot e^{-4i\varphi}\cdot\sin^{4}\theta\cdot(13\cos^{3}\theta-3\cos\theta)$
$Y_{7}^{-3}(\theta,\varphi)={3\over 64}\sqrt{35\over 2\pi}\cdot e^{-3i\varphi}\cdot\sin^{3}\theta\cdot(143\cos^{4}\theta-66\cos^{2}\theta+3)$
$Y_{7}^{-2}(\theta,\varphi)={3\over 64}\sqrt{35\over \pi}\cdot e^{-2i\varphi}\cdot\sin^{2}\theta\cdot(143\cos^{5}\theta-110\cos^{3}\theta+15\cos\theta)$
$Y_{7}^{-1}(\theta,\varphi)={1\over 64}\sqrt{105\over 2\pi}\cdot e^{-i\varphi}\cdot\sin\theta\cdot(429\cos^{6}\theta-495\cos^{4}\theta+135\cos^{2}\theta-5)$
$Y_{7}^{0}(\theta,\varphi)={1\over 32}\sqrt{15\over \pi}\cdot(429\cos^{7}\theta-693\cos^{5}\theta+315\cos^{3}\theta-35\cos\theta)$
$Y_{7}^{1}(\theta,\varphi)={-1\over 64}\sqrt{105\over 2\pi}\cdot e^{i\varphi}\cdot\sin\theta\cdot(429\cos^{6}\theta-495\cos^{4}\theta+135\cos^{2}\theta-5)$
$Y_{7}^{2}(\theta,\varphi)={3\over 64}\sqrt{35\over \pi}\cdot e^{2i\varphi}\cdot\sin^{2}\theta\cdot(143\cos^{5}\theta-110\cos^{3}\theta+15\cos\theta)$
$Y_{7}^{3}(\theta,\varphi)={-3\over 64}\sqrt{35\over 2\pi}\cdot e^{3i\varphi}\cdot\sin^{3}\theta\cdot(143\cos^{4}\theta-66\cos^{2}\theta+3)$
$Y_{7}^{4}(\theta,\varphi)={3\over 32}\sqrt{385\over 2\pi}\cdot e^{4i\varphi}\cdot\sin^{4}\theta\cdot(13\cos^{3}\theta-3\cos\theta)$
$Y_{7}^{5}(\theta,\varphi)={-3\over 64}\sqrt{385\over 2\pi}\cdot e^{5i\varphi}\cdot\sin^{5}\theta\cdot(13\cos^{2}\theta-1)$
$Y_{7}^{6}(\theta,\varphi)={3\over 64}\sqrt{5005\over \pi}\cdot e^{6i\varphi}\cdot\sin^{6}\theta\cdot\cos\theta$
$Y_{7}^{7}(\theta,\varphi)={-3\over 64}\sqrt{715\over 2\pi}\cdot e^{7i\varphi}\cdot\sin^{7}\theta$

### l = 8

$Y_{8}^{-8}(\theta,\varphi)={3\over 256}\sqrt{12155\over 2\pi}\cdot e^{-8i\varphi}\cdot\sin^{8}\theta$
$Y_{8}^{-7}(\theta,\varphi)={3\over 64}\sqrt{12155\over 2\pi}\cdot e^{-7i\varphi}\cdot\sin^{7}\theta\cdot\cos\theta$
$Y_{8}^{-6}(\theta,\varphi)={1\over 128}\sqrt{7293\over \pi}\cdot e^{-6i\varphi}\cdot\sin^{6}\theta\cdot(15\cos^{2}\theta-1)$
$Y_{8}^{-5}(\theta,\varphi)={3\over 64}\sqrt{17017\over 2\pi}\cdot e^{-5i\varphi}\cdot\sin^{5}\theta\cdot(5\cos^{3}\theta-\cos\theta)$
$Y_{8}^{-4}(\theta,\varphi)={3\over 128}\sqrt{1309\over 2\pi}\cdot e^{-4i\varphi}\cdot\sin^{4}\theta\cdot(65\cos^{4}\theta-26\cos^{2}\theta+1)$
$Y_{8}^{-3}(\theta,\varphi)={1\over 64}\sqrt{19635\over 2\pi}\cdot e^{-3i\varphi}\cdot\sin^{3}\theta\cdot(39\cos^{5}\theta-26\cos^{3}\theta+3\cos\theta)$
$Y_{8}^{-2}(\theta,\varphi)={3\over 128}\sqrt{595\over \pi}\cdot e^{-2i\varphi}\cdot\sin^{2}\theta\cdot(143\cos^{6}\theta-143\cos^{4}\theta+33\cos^{2}\theta-1)$
$Y_{8}^{-1}(\theta,\varphi)={3\over 64}\sqrt{17\over 2\pi}\cdot e^{-i\varphi}\cdot\sin\theta\cdot(715\cos^{7}\theta-1001\cos^{5}\theta+385\cos^{3}\theta-35\cos\theta)$
$Y_{8}^{0}(\theta,\varphi)={1\over 256}\sqrt{17\over \pi}\cdot(6435\cos^{8}\theta-12012\cos^{6}\theta+6930\cos^{4}\theta-1260\cos^{2}\theta+35)$
$Y_{8}^{1}(\theta,\varphi)={-3\over 64}\sqrt{17\over 2\pi}\cdot e^{i\varphi}\cdot\sin\theta\cdot(715\cos^{7}\theta-1001\cos^{5}\theta+385\cos^{3}\theta-35\cos\theta)$
$Y_{8}^{2}(\theta,\varphi)={3\over 128}\sqrt{595\over \pi}\cdot e^{2i\varphi}\cdot\sin^{2}\theta\cdot(143\cos^{6}\theta-143\cos^{4}\theta+33\cos^{2}\theta-1)$
$Y_{8}^{3}(\theta,\varphi)={-1\over 64}\sqrt{19635\over 2\pi}\cdot e^{3i\varphi}\cdot\sin^{3}\theta\cdot(39\cos^{5}\theta-26\cos^{3}\theta+3\cos\theta)$
$Y_{8}^{4}(\theta,\varphi)={3\over 128}\sqrt{1309\over 2\pi}\cdot e^{4i\varphi}\cdot\sin^{4}\theta\cdot(65\cos^{4}\theta-26\cos^{2}\theta+1)$
$Y_{8}^{5}(\theta,\varphi)={-3\over 64}\sqrt{17017\over 2\pi}\cdot e^{5i\varphi}\cdot\sin^{5}\theta\cdot(5\cos^{3}\theta-\cos\theta)$
$Y_{8}^{6}(\theta,\varphi)={1\over 128}\sqrt{7293\over \pi}\cdot e^{6i\varphi}\cdot\sin^{6}\theta\cdot(15\cos^{2}\theta-1)$
$Y_{8}^{7}(\theta,\varphi)={-3\over 64}\sqrt{12155\over 2\pi}\cdot e^{7i\varphi}\cdot\sin^{7}\theta\cdot\cos\theta$
$Y_{8}^{8}(\theta,\varphi)={3\over 256}\sqrt{12155\over 2\pi}\cdot e^{8i\varphi}\cdot\sin^{8}\theta$

### l = 9

$Y_{9}^{-9}(\theta,\varphi)={1\over 512}\sqrt{230945\over \pi}\cdot e^{-9i\varphi}\cdot\sin^{9}\theta$
$Y_{9}^{-8}(\theta,\varphi)={3\over 256}\sqrt{230945\over 2\pi}\cdot e^{-8i\varphi}\cdot\sin^{8}\theta\cdot\cos\theta$
$Y_{9}^{-7}(\theta,\varphi)={3\over 512}\sqrt{13585\over \pi}\cdot e^{-7i\varphi}\cdot\sin^{7}\theta\cdot(17\cos^{2}\theta-1)$
$Y_{9}^{-6}(\theta,\varphi)={1\over 128}\sqrt{40755\over \pi}\cdot e^{-6i\varphi}\cdot\sin^{6}\theta\cdot(17\cos^{3}\theta-3\cos\theta)$
$Y_{9}^{-5}(\theta,\varphi)={3\over 256}\sqrt{2717\over \pi}\cdot e^{-5i\varphi}\cdot\sin^{5}\theta\cdot(85\cos^{4}\theta-30\cos^{2}\theta+1)$
$Y_{9}^{-4}(\theta,\varphi)={3\over 128}\sqrt{95095\over 2\pi}\cdot e^{-4i\varphi}\cdot\sin^{4}\theta\cdot(17\cos^{5}\theta-10\cos^{3}\theta+\cos\theta)$
$Y_{9}^{-3}(\theta,\varphi)={1\over 256}\sqrt{21945\over \pi}\cdot e^{-3i\varphi}\cdot\sin^{3}\theta\cdot(221\cos^{6}\theta-195\cos^{4}\theta+39\cos^{2}\theta-1)$
$Y_{9}^{-2}(\theta,\varphi)={3\over 128}\sqrt{1045\over \pi}\cdot e^{-2i\varphi}\cdot\sin^{2}\theta\cdot(221\cos^{7}\theta-273\cos^{5}\theta+91\cos^{3}\theta-7\cos\theta)$
$Y_{9}^{-1}(\theta,\varphi)={3\over 256}\sqrt{95\over 2\pi}\cdot e^{-i\varphi}\cdot\sin\theta\cdot(2431\cos^{8}\theta-4004\cos^{6}\theta+2002\cos^{4}\theta-308\cos^{2}\theta+7)$
$Y_{9}^{0}(\theta,\varphi)={1\over 256}\sqrt{19\over \pi}\cdot(12155\cos^{9}\theta-25740\cos^{7}\theta+18018\cos^{5}\theta-4620\cos^{3}\theta+315\cos\theta)$
$Y_{9}^{1}(\theta,\varphi)={-3\over 256}\sqrt{95\over 2\pi}\cdot e^{i\varphi}\cdot\sin\theta\cdot(2431\cos^{8}\theta-4004\cos^{6}\theta+2002\cos^{4}\theta-308\cos^{2}\theta+7)$
$Y_{9}^{2}(\theta,\varphi)={3\over 128}\sqrt{1045\over \pi}\cdot e^{2i\varphi}\cdot\sin^{2}\theta\cdot(221\cos^{7}\theta-273\cos^{5}\theta+91\cos^{3}\theta-7\cos\theta)$
$Y_{9}^{3}(\theta,\varphi)={-1\over 256}\sqrt{21945\over \pi}\cdot e^{3i\varphi}\cdot\sin^{3}\theta\cdot(221\cos^{6}\theta-195\cos^{4}\theta+39\cos^{2}\theta-1)$
$Y_{9}^{4}(\theta,\varphi)={3\over 128}\sqrt{95095\over 2\pi}\cdot e^{4i\varphi}\cdot\sin^{4}\theta\cdot(17\cos^{5}\theta-10\cos^{3}\theta+\cos\theta)$
$Y_{9}^{5}(\theta,\varphi)={-3\over 256}\sqrt{2717\over \pi}\cdot e^{5i\varphi}\cdot\sin^{5}\theta\cdot(85\cos^{4}\theta-30\cos^{2}\theta+1)$
$Y_{9}^{6}(\theta,\varphi)={1\over 128}\sqrt{40755\over \pi}\cdot e^{6i\varphi}\cdot\sin^{6}\theta\cdot(17\cos^{3}\theta-3\cos\theta)$
$Y_{9}^{7}(\theta,\varphi)={-3\over 512}\sqrt{13585\over \pi}\cdot e^{7i\varphi}\cdot\sin^{7}\theta\cdot(17\cos^{2}\theta-1)$
$Y_{9}^{8}(\theta,\varphi)={3\over 256}\sqrt{230945\over 2\pi}\cdot e^{8i\varphi}\cdot\sin^{8}\theta\cdot\cos\theta$
$Y_{9}^{9}(\theta,\varphi)={-1\over 512}\sqrt{230945\over \pi}\cdot e^{9i\varphi}\cdot\sin^{9}\theta$

### l = 10

$Y_{10}^{-10}(\theta,\varphi)={1\over 1024}\sqrt{969969\over \pi}\cdot e^{-10i\varphi}\cdot\sin^{10}\theta$
$Y_{10}^{-9}(\theta,\varphi)={1\over 512}\sqrt{4849845\over \pi}\cdot e^{-9i\varphi}\cdot\sin^{9}\theta\cdot\cos\theta$
$Y_{10}^{-8}(\theta,\varphi)={1\over 512}\sqrt{255255\over 2\pi}\cdot e^{-8i\varphi}\cdot\sin^{8}\theta\cdot(19\cos^{2}\theta-1)$
$Y_{10}^{-7}(\theta,\varphi)={3\over 512}\sqrt{85085\over \pi}\cdot e^{-7i\varphi}\cdot\sin^{7}\theta\cdot(19\cos^{3}\theta-3\cos\theta)$
$Y_{10}^{-6}(\theta,\varphi)={3\over 1024}\sqrt{5005\over \pi}\cdot e^{-6i\varphi}\cdot\sin^{6}\theta\cdot(323\cos^{4}\theta-102\cos^{2}\theta+3)$
$Y_{10}^{-5}(\theta,\varphi)={3\over 256}\sqrt{1001\over \pi}\cdot e^{-5i\varphi}\cdot\sin^{5}\theta\cdot(323\cos^{5}\theta-170\cos^{3}\theta+15\cos\theta)$
$Y_{10}^{-4}(\theta,\varphi)={3\over 256}\sqrt{5005\over 2\pi}\cdot e^{-4i\varphi}\cdot\sin^{4}\theta\cdot(323\cos^{6}\theta-255\cos^{4}\theta+45\cos^{2}\theta-1)$
$Y_{10}^{-3}(\theta,\varphi)={3\over 256}\sqrt{5005\over \pi}\cdot e^{-3i\varphi}\cdot\sin^{3}\theta\cdot(323\cos^{7}\theta-357\cos^{5}\theta+105\cos^{3}\theta-7\cos\theta)$
$Y_{10}^{-2}(\theta,\varphi)={3\over 512}\sqrt{385\over 2\pi}\cdot e^{-2i\varphi}\cdot\sin^{2}\theta\cdot(4199\cos^{8}\theta-6188\cos^{6}\theta+2730\cos^{4}\theta-364\cos^{2}\theta+7)$
$Y_{10}^{-1}(\theta,\varphi)={1\over 256}\sqrt{1155\over 2\pi}\cdot e^{-i\varphi}\cdot\sin\theta\cdot(4199\cos^{9}\theta-7956\cos^{7}\theta+4914\cos^{5}\theta-1092\cos^{3}\theta+63\cos\theta)$
$Y_{10}^{0}(\theta,\varphi)={1\over 512}\sqrt{21\over \pi}\cdot(46189\cos^{10}\theta-109395\cos^{8}\theta+90090\cos^{6}\theta-30030\cos^{4}\theta+3465\cos^{2}\theta-63)$
$Y_{10}^{1}(\theta,\varphi)={-1\over 256}\sqrt{1155\over 2\pi}\cdot e^{i\varphi}\cdot\sin\theta\cdot(4199\cos^{9}\theta-7956\cos^{7}\theta+4914\cos^{5}\theta-1092\cos^{3}\theta+63\cos\theta)$
$Y_{10}^{2}(\theta,\varphi)={3\over 512}\sqrt{385\over 2\pi}\cdot e^{2i\varphi}\cdot\sin^{2}\theta\cdot(4199\cos^{8}\theta-6188\cos^{6}\theta+2730\cos^{4}\theta-364\cos^{2}\theta+7)$
$Y_{10}^{3}(\theta,\varphi)={-3\over 256}\sqrt{5005\over \pi}\cdot e^{3i\varphi}\cdot\sin^{3}\theta\cdot(323\cos^{7}\theta-357\cos^{5}\theta+105\cos^{3}\theta-7\cos\theta)$
$Y_{10}^{4}(\theta,\varphi)={3\over 256}\sqrt{5005\over 2\pi}\cdot e^{4i\varphi}\cdot\sin^{4}\theta\cdot(323\cos^{6}\theta-255\cos^{4}\theta+45\cos^{2}\theta-1)$
$Y_{10}^{5}(\theta,\varphi)={-3\over 256}\sqrt{1001\over \pi}\cdot e^{5i\varphi}\cdot\sin^{5}\theta\cdot(323\cos^{5}\theta-170\cos^{3}\theta+15\cos\theta)$
$Y_{10}^{6}(\theta,\varphi)={3\over 1024}\sqrt{5005\over \pi}\cdot e^{6i\varphi}\cdot\sin^{6}\theta\cdot(323\cos^{4}\theta-102\cos^{2}\theta+3)$
$Y_{10}^{7}(\theta,\varphi)={-3\over 512}\sqrt{85085\over \pi}\cdot e^{7i\varphi}\cdot\sin^{7}\theta\cdot(19\cos^{3}\theta-3\cos\theta)$
$Y_{10}^{8}(\theta,\varphi)={1\over 512}\sqrt{255255\over 2\pi}\cdot e^{8i\varphi}\cdot\sin^{8}\theta\cdot(19\cos^{2}\theta-1)$
$Y_{10}^{9}(\theta,\varphi)={-1\over 512}\sqrt{4849845\over \pi}\cdot e^{9i\varphi}\cdot\sin^{9}\theta\cdot\cos\theta$
$Y_{10}^{10}(\theta,\varphi)={1\over 1024}\sqrt{969969\over \pi}\cdot e^{10i\varphi}\cdot\sin^{10}\theta$

## Real spherical harmonics

For each real spherical harmonic, the corresponding atomic orbital symbol (s, p, d, f, g) is reported as well.

### l = 0

\begin{align}Y_{00} & = s = Y_0^0 = \frac{1}{2} \sqrt{\frac{1}{\pi}}\end{align}

### l = 1

\begin{align} Y_{1,-1} & = p_y = i \sqrt{\frac{1}{2}} \left( Y_1^{- 1} + Y_1^1 \right) = \sqrt{\frac{3}{4 \pi}} \cdot \frac{y}{r} \\ Y_{10} & = p_z = Y_1^0 = \sqrt{\frac{3}{4 \pi}} \cdot \frac{z}{r} \\ Y_{11} & = p_x = \sqrt{\frac{1}{2}} \left( Y_1^{- 1} - Y_1^1 \right) = \sqrt{\frac{3}{4 \pi}} \cdot \frac{x}{r} \end{align}

### l = 2

\begin{align}Y_{2,-2} & = d_{xy} = i \sqrt{\frac{1}{2}} \left( Y_2^{- 2} - Y_2^2\right) = \frac{1}{2} \sqrt{\frac{15}{\pi}} \cdot \frac{x y}{r^2} \\Y_{2,-1} & = d_{yz} = i \sqrt{\frac{1}{2}} \left( Y_2^{- 1} + Y_2^1 \right) = \frac{1}{2} \sqrt{\frac{15}{\pi}} \cdot \frac{y z}{r^2} \\Y_{20} & = d_{z^2} = Y_2^0 = \frac{1}{4} \sqrt{\frac{5}{\pi}} \cdot \frac{- x^2 - y^2 + 2 z^2}{r^2} \\Y_{21} & = d_{xz} = \sqrt{\frac{1}{2}} \left( Y_2^{- 1} - Y_2^1 \right) = \frac{1}{2} \sqrt{\frac{15}{\pi}} \cdot \frac{z x}{r^2} \\Y_{22} & = d_{x^2-y^2} = \sqrt{\frac{1}{2}} \left( Y_2^{- 2} + Y_2^2 \right) = \frac{1}{4} \sqrt{\frac{15}{\pi}} \cdot \frac{x^2 - y^2 }{r^2}\end{align}

### l = 3

\begin{align}Y_{3,-3} & = f_{y(3x^2-y^2)} = i \sqrt{\frac{1}{2}} \left( Y_3^{- 3} + Y_3^3 \right) = \frac{1}{4} \sqrt{\frac{35}{2 \pi}} \cdot \frac{\left( 3 x^2 - y^2 \right) y}{r^3} \\Y_{3,-2} & = f_{xyz} = i \sqrt{\frac{1}{2}} \left( Y_3^{- 2} - Y_3^2 \right) = \frac{1}{2} \sqrt{\frac{105}{\pi}} \cdot \frac{xy z}{r^3} \\Y_{3,-1} & = f_{yz^2} = i \sqrt{\frac{1}{2}} \left( Y_3^{- 1} + Y_3^1 \right) = \frac{1}{4} \sqrt{\frac{21}{2 \pi}} \cdot \frac{y (4 z^2 - x^2 - y^2)}{r^3} \\Y_{30} & = f_{z^3} = Y_3^0 = \frac{1}{4} \sqrt{\frac{7}{\pi}} \cdot \frac{z (2 z^2 - 3 x^2 - 3 y^2)}{r^3} \\Y_{31} & = f_{xz^2} = \sqrt{\frac{1}{2}} \left( Y_3^{- 1} - Y_3^1 \right) = \frac{1}{4} \sqrt{\frac{21}{2 \pi}} \cdot \frac{x (4 z^2 - x^2 - y^2)}{r^3} \\Y_{32} & = f_{z(x^2-y^2)} = \sqrt{\frac{1}{2}} \left( Y_3^{- 2} + Y_3^2 \right) = \frac{1}{4} \sqrt{\frac{105}{\pi}} \cdot \frac{\left( x^2 - y^2 \right) z}{r^3} \\Y_{33} & = f_{x(x^2-3y^2)} = \sqrt{\frac{1}{2}} \left( Y_3^{- 3} - Y_3^3 \right) = \frac{1}{4} \sqrt{\frac{35}{2 \pi}} \cdot \frac{\left( x^2 - 3 y^2 \right) x}{r^3}\end{align}

### l = 4

\begin{align}Y_{4,-4} & = g_{xy(x^2-y^2)} = i \sqrt{\frac{1}{2}} \left( Y_4^{- 4} - Y_4^4 \right) = \frac{3}{4} \sqrt{\frac{35}{\pi}} \cdot \frac{xy \left( x^2 - y^2 \right)}{r^4} \\Y_{4,-3} & = g_{zy^3} = i \sqrt{\frac{1}{2}} \left( Y_4^{- 3} + Y_4^3 \right) = \frac{3}{4} \sqrt{\frac{35}{2 \pi}} \cdot \frac{(3 x^2 - y^2) yz}{r^4} \\Y_{4,-2} & = g_{z^2xy} = i \sqrt{\frac{1}{2}} \left( Y_4^{- 2} - Y_4^2 \right) = \frac{3}{4} \sqrt{\frac{5}{\pi}} \cdot \frac{xy \cdot (7 z^2 - r^2)}{r^4} \\Y_{4,-1} & = g_{z^3y} = i \sqrt{\frac{1}{2}} \left( Y_4^{- 1} + Y_4^1\right) = \frac{3}{4} \sqrt{\frac{5}{2 \pi}} \cdot \frac{yz \cdot (7 z^2 - 3 r^2)}{r^4} \\Y_{40} & = g_{z^4} = Y_4^0 = \frac{3}{16} \sqrt{\frac{1}{\pi}} \cdot \frac{(35 z^4 - 30 z^2 r^2 + 3 r^4)}{r^4} \\Y_{41} & = g_{z^3x} = \sqrt{\frac{1}{2}} \left( Y_4^{- 1} - Y_4^1 \right) = \frac{3}{4} \sqrt{\frac{5}{2 \pi}} \cdot \frac{xz \cdot (7 z^2 - 3 r^2)}{r^4} \\Y_{42} & = g_{z^2xy} = \sqrt{\frac{1}{2}} \left( Y_4^{- 2} + Y_4^2 \right) = \frac{3}{8} \sqrt{\frac{5}{\pi}} \cdot \frac{(x^2 - y^2) \cdot (7 z^2 - r^2)}{r^4} \\Y_{43} & = g_{zx^3} = \sqrt{\frac{1}{2}} \left( Y_4^{- 3} - Y_4^3 \right) = \frac{3}{4} \sqrt{\frac{35}{2 \pi}} \cdot \frac{(x^2 - 3 y^2) xz}{r^4} \\Y_{44} & = g_{x^4+y^4} = \sqrt{\frac{1}{2}} \left( Y_4^{- 4} + Y_4^4 \right) = \frac{3}{16} \sqrt{\frac{35}{\pi}} \cdot \frac{x^2 \left( x^2 - 3 y^2 \right) - y^2 \left( 3 x^2 - y^2 \right)}{r^4}\end{align}