Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

M4: Spherical Harmonics

( \newcommand{\kernel}{\mathrm{null}\,}\)

Represented in a system of spherical coordinates, Laplace's spherical harmonics Yml are a specific set of spherical harmonics that forms an orthogonal system. Spherical harmonics are important in many theoretical and practical applications, particularly in the computation of atomic orbital electron configurations

l = 0

Y00(θ,φ)=121π

l = 1

Y11(θ,φ)=1232πeiφsinθ=1232π(xiy)rY01(θ,φ)=123πcosθ=123πzrY11(θ,φ)=1232πeiφsinθ=1232π(x+iy)r

l = 2

Y22(θ,φ)=14152πe2iφsin2θ=14152π(xiy)2r2

Y12(θ,φ)=12152πeiφsinθcosθ=12152π(xiy)zr2

Y02(θ,φ)=145π(3cos2θ1)=145π(2z2x2y2)r2

Y12(θ,φ)=12152πeiφsinθcosθ=12152π(x+iy)zr2

Y22(θ,φ)=14152πe2iφsin2θ=14152π(x+iy)2r2

l = 3

Y33(θ,φ)=1835πe3iφsin3θ=1835π(xiy)3r3
Y23(θ,φ)=141052πe2iφsin2θcosθ=141052π(xiy)2zr3
Y13(θ,φ)=1821πeiφsinθ(5cos2θ1)=1821π(xiy)(4z2x2y2)r3
Y03(θ,φ)=147π(5cos3θ3cosθ)=147πz(2z23x23y2)r3
Y13(θ,φ)=1821πeiφsinθ(5cos2θ1)=1821π(x+iy)(4z2x2y2)r3
Y23(θ,φ)=141052πe2iφsin2θcosθ=141052π(x+iy)2zr3
Y33(θ,φ)=1835πe3iφsin3θ=1835π(x+iy)3r3

l = 4

Y44(θ,φ)=316352πe4iφsin4θ=316352π(xiy)4r4
Y34(θ,φ)=3835πe3iφsin3θcosθ=3835π(xiy)3zr4
Y24(θ,φ)=3852πe2iφsin2θ(7cos2θ1)=3852π(xiy)2(7z2r2)r4
Y14(θ,φ)=385πeiφsinθ(7cos3θ3cosθ)=385π(xiy)z(7z23r2)r4
Y04(θ,φ)=3161π(35cos4θ30cos2θ+3)=3161π(35z430z2r2+3r4)r4
Y14(θ,φ)=385πeiφsinθ(7cos3θ3cosθ)=385π(x+iy)z(7z23r2)r4
Y24(θ,φ)=3852πe2iφsin2θ(7cos2θ1)=3852π(x+iy)2(7z2r2)r4
Y34(θ,φ)=3835πe3iφsin3θcosθ=3835π(x+iy)3zr4
Y44(θ,φ)=316352πe4iφsin4θ=316352π(x+iy)4r4

l = 5

Y55(θ,φ)=33277πe5iφsin5θ
Y45(θ,φ)=3163852πe4iφsin4θcosθ
Y35(θ,φ)=132385πe3iφsin3θ(9cos2θ1)
Y25(θ,φ)=1811552πe2iφsin2θ(3cos3θcosθ)
Y15(θ,φ)=1161652πeiφsinθ(21cos4θ14cos2θ+1)
Y05(θ,φ)=11611π(63cos5θ70cos3θ+15cosθ)
Y15(θ,φ)=1161652πeiφsinθ(21cos4θ14cos2θ+1)
Y25(θ,φ)=1811552πe2iφsin2θ(3cos3θcosθ)
Y35(θ,φ)=132385πe3iφsin3θ(9cos2θ1)
Y45(θ,φ)=3163852πe4iφsin4θcosθ
Y55(θ,φ)=33277πe5iφsin5θ

l = 6

Y66(θ,φ)=1643003πe6iφsin6θ
Y56(θ,φ)=3321001πe5iφsin5θcosθ
Y46(θ,φ)=332912πe4iφsin4θ(11cos2θ1)
Y36(θ,φ)=1321365πe3iφsin3θ(11cos3θ3cosθ)
Y26(θ,φ)=1641365πe2iφsin2θ(33cos4θ18cos2θ+1)
Y16(θ,φ)=1162732πeiφsinθ(33cos5θ30cos3θ+5cosθ)
Y06(θ,φ)=13213π(231cos6θ315cos4θ+105cos2θ5)
Y16(θ,φ)=1162732πeiφsinθ(33cos5θ30cos3θ+5cosθ)
Y26(θ,φ)=1641365πe2iφsin2θ(33cos4θ18cos2θ+1)
Y36(θ,φ)=1321365πe3iφsin3θ(11cos3θ3cosθ)
Y46(θ,φ)=332912πe4iφsin4θ(11cos2θ1)
Y56(θ,φ)=3321001πe5iφsin5θcosθ
Y66(θ,φ)=1643003πe6iφsin6θ"mwe-math-fallback-png-inline tex"

l = 7

Y77(θ,φ)=3647152πe7iφsin7θ
Y67(θ,φ)=3645005πe6iφsin6θcosθ
Y57(θ,φ)=3643852πe5iφsin5θ(13cos2θ1)
Y47(θ,φ)=3323852πe4iφsin4θ(13cos3θ3cosθ)
Y37(θ,φ)=364352πe3iφsin3θ(143cos4θ66cos2θ+3)
Y27(θ,φ)=36435πe2iφsin2θ(143cos5θ110cos3θ+15cosθ)
Y17(θ,φ)=1641052πeiφsinθ(429cos6θ495cos4θ+135cos2θ5)
Y07(θ,φ)=13215π(429cos7θ693cos5θ+315cos3θ35cosθ)
Y17(θ,φ)=1641052πeiφsinθ(429cos6θ495cos4θ+135cos2θ5)
Y27(θ,φ)=36435πe2iφsin2θ(143cos5θ110cos3θ+15cosθ)
Y37(θ,φ)=364352πe3iφsin3θ(143cos4θ66cos2θ+3)
Y47(θ,φ)=3323852πe4iφsin4θ(13cos3θ3cosθ)
Y57(θ,φ)=3643852πe5iφsin5θ(13cos2θ1)
Y67(θ,φ)=3645005πe6iφsin6θcosθ
Y77(θ,φ)=3647152πe7iφsin7θ

l = 8

Y88(θ,φ)=3256121552πe8iφsin8θ
Y78(θ,φ)=364121552πe7iφsin7θcosθ
Y68(θ,φ)=11287293πe6iφsin6θ(15cos2θ1)
Y58(θ,φ)=364170172πe5iφsin5θ(5cos3θcosθ)
Y48(θ,φ)=312813092πe4iφsin4θ(65cos4θ26cos2θ+1)
Y38(θ,φ)=164196352πe3iφsin3θ(39cos5θ26cos3θ+3cosθ)
Y28(θ,φ)=3128595πe2iφsin2θ(143cos6θ143cos4θ+33cos2θ1)
Y18(θ,φ)=364172πeiφsinθ(715cos7θ1001cos5θ+385cos3θ35cosθ)
Y08(θ,φ)=125617π(6435cos8θ12012cos6θ+6930cos4θ1260cos2θ+35)
Y18(θ,φ)=364172πeiφsinθ(715cos7θ1001cos5θ+385cos3θ35cosθ)
Y28(θ,φ)=3128595πe2iφsin2θ(143cos6θ143cos4θ+33cos2θ1)
Y38(θ,φ)=164196352πe3iφsin3θ(39cos5θ26cos3θ+3cosθ)
Y48(θ,φ)=312813092πe4iφsin4θ(65cos4θ26cos2θ+1)
Y58(θ,φ)=364170172πe5iφsin5θ(5cos3θcosθ)
Y68(θ,φ)=11287293πe6iφsin6θ(15cos2θ1)
Y78(θ,φ)=364121552πe7iφsin7θcosθ
Y88(θ,φ)=3256121552πe8iφsin8θ

l = 9

Y99(θ,φ)=1512230945πe9iφsin9θ
Y89(θ,φ)=32562309452πe8iφsin8θcosθ
Y79(θ,φ)=351213585πe7iφsin7θ(17cos2θ1)
Y69(θ,φ)=112840755πe6iφsin6θ(17cos3θ3cosθ)
Y59(θ,φ)=32562717πe5iφsin5θ(85cos4θ30cos2θ+1)
Y49(θ,φ)=3128950952πe4iφsin4θ(17cos5θ10cos3θ+cosθ)
Y39(θ,φ)=125621945πe3iφsin3θ(221cos6θ195cos4θ+39cos2θ1)
Y29(θ,φ)=31281045πe2iφsin2θ(221cos7θ273cos5θ+91cos3θ7cosθ)
Y19(θ,φ)=3256952πeiφsinθ(2431cos8θ4004cos6θ+2002cos4θ308cos2θ+7)
Y09(θ,φ)=125619π(12155cos9θ25740cos7θ+18018cos5θ4620cos3θ+315cosθ)
Y19(θ,φ)=3256952πeiφsinθ(2431cos8θ4004cos6θ+2002cos4θ308cos2θ+7)
Y29(θ,φ)=31281045πe2iφsin2θ(221cos7θ273cos5θ+91cos3θ7cosθ)
Y39(θ,φ)=125621945πe3iφsin3θ(221cos6θ195cos4θ+39cos2θ1)
Y49(θ,φ)=3128950952πe4iφsin4θ(17cos5θ10cos3θ+cosθ)
Y59(θ,φ)=32562717πe5iφsin5θ(85cos4θ30cos2θ+1)
Y69(θ,φ)=112840755πe6iφsin6θ(17cos3θ3cosθ)
Y79(θ,φ)=351213585πe7iφsin7θ(17cos2θ1)
Y89(θ,φ)=32562309452πe8iφsin8θcosθ
Y99(θ,φ)=1512230945πe9iφsin9θ

l = 10

Y1010(θ,φ)=11024969969πe10iφsin10θ
Y910(θ,φ)=15124849845πe9iφsin9θcosθ
Y810(θ,φ)=15122552552πe8iφsin8θ(19cos2θ1)
Y710(θ,φ)=351285085πe7iφsin7θ(19cos3θ3cosθ)
Y610(θ,φ)=310245005πe6iφsin6θ(323cos4θ102cos2θ+3)
Y510(θ,φ)=32561001πe5iφsin5θ(323cos5θ170cos3θ+15cosθ)
Y410(θ,φ)=325650052πe4iφsin4θ(323cos6θ255cos4θ+45cos2θ1)
Y310(θ,φ)=32565005πe3iφsin3θ(323cos7θ357cos5θ+105cos3θ7cosθ)
Y210(θ,φ)=35123852πe2iφsin2θ(4199cos8θ6188cos6θ+2730cos4θ364cos2θ+7)
Y110(θ,φ)=125611552πeiφsinθ(4199cos9θ7956cos7θ+4914cos5θ1092cos3θ+63cosθ)
Y010(θ,φ)=151221π(46189cos10θ109395cos8θ+90090cos6θ30030cos4θ+3465cos2θ63)
Y110(θ,φ)=125611552πeiφsinθ(4199cos9θ7956cos7θ+4914cos5θ1092cos3θ+63cosθ)
Y210(θ,φ)=35123852πe2iφsin2θ(4199cos8θ6188cos6θ+2730cos4θ364cos2θ+7)
Y310(θ,φ)=32565005πe3iφsin3θ(323cos7θ357cos5θ+105cos3θ7cosθ)
Y410(θ,φ)=325650052πe4iφsin4θ(323cos6θ255cos4θ+45cos2θ1)
Y510(θ,φ)=32561001πe5iφsin5θ(323cos5θ170cos3θ+15cosθ)
Y610(θ,φ)=310245005πe6iφsin6θ(323cos4θ102cos2θ+3)
Y710(θ,φ)=351285085πe7iφsin7θ(19cos3θ3cosθ)
Y810(θ,φ)=15122552552πe8iφsin8θ(19cos2θ1)
Y910(θ,φ)=15124849845πe9iφsin9θcosθ
Y1010(θ,φ)=11024969969πe10iφsin10θ

Real spherical harmonics

For each real spherical harmonic, the corresponding atomic orbital symbol (s, p, d, f, g) is reported as well.

l = 0

Y00=s=Y00=121π

l = 1

Y1,1=py=i12(Y11+Y11)=34πyrY10=pz=Y01=34πzrY11=px=12(Y11Y11)=34πxr

l = 2

Y2,2=dxy=i12(Y22Y22)=1215πxyr2Y2,1=dyz=i12(Y12+Y12)=1215πyzr2Y20=dz2=Y02=145πx2y2+2z2r2Y21=dxz=12(Y12Y12)=1215πzxr2Y22=dx2y2=12(Y22+Y22)=1415πx2y2r2

l = 3

Y3,3=fy(3x2y2)=i12(Y33+Y33)=14352π(3x2y2)yr3Y3,2=fxyz=i12(Y23Y23)=12105πxyzr3Y3,1=fyz2=i12(Y13+Y13)=14212πy(4z2x2y2)r3Y30=fz3=Y03=147πz(2z23x23y2)r3Y31=fxz2=12(Y13Y13)=14212πx(4z2x2y2)r3Y32=fz(x2y2)=12(Y23+Y23)=14105π(x2y2)zr3Y33=fx(x23y2)=12(Y33Y33)=14352π(x23y2)xr3

l = 4

Y4,4=gxy(x2y2)=i12(Y44Y44)=3435πxy(x2y2)r4Y4,3=gzy3=i12(Y34+Y34)=34352π(3x2y2)yzr4Y4,2=gz2xy=i12(Y24Y24)=345πxy(7z2r2)r4Y4,1=gz3y=i12(Y14+Y14)=3452πyz(7z23r2)r4Y40=gz4=Y04=3161π(35z430z2r2+3r4)r4Y41=gz3x=12(Y14Y14)=3452πxz(7z23r2)r4Y42=gz2xy=12(Y24+Y24)=385π(x2y2)(7z2r2)r4Y43=gzx3=12(Y34Y34)=34352π(x23y2)xzr4Y44=gx4+y4=12(Y44+Y44)=31635πx2(x23y2)y2(3x2y2)r4

External links

References

Cited references
  1. D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii (1988). Quantum theory of angular momentum : irreducible tensors, spherical harmonics, vector coupling coefficients, 3nj symbols (1. repr. ed.). Singapore: World Scientific Pub. p. 155-156. ISBN 9971-50-107-4.
  2. C.D.H. Chisholm (1976). Group theoretical techniques in quantum chemistry. New York: Academic Press. ISBN 0-12-172950-8.
  3. Blanco, Miguel A.; Flórez, M.; Bermejo, M. (1 December 1997). "Evaluation of the rotation matrices in the basis of real spherical harmonics". Journal of Molecular Structure: THEOCHEM 419 (1–3): 19–27. doi:10.1016/S0166-1280(97)00185-1.
General references

M4: Spherical Harmonics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?