Skip to main content
Chemistry LibreTexts

M3: Laguerre Polynomials

  • Page ID
    13500
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    The Laguerre polynomials are solutions of Laguerre's differential equation:

    \[x\,y'' + (1 - x)\,y' + n\,y = 0\,\]

    These are the first few Laguerre polynomials:

    \(n\) \(L_n(x)\,\)
    0 1
    1 \(-x+1\,\)
    2 \({\frac{1}{2}} (x^2-4x+2) \,\)
    3 \({\frac{1}{6}} (-x^3+9x^2-18x+6) \,\)
    4 \({\frac{1}{24}} (x^4-16x^3+72x^2-96x+24) \,\)
    5 \({\frac{1}{120}} (-x^5+25x^4-200x^3+600x^2-600x+120) \,\)
    6 \({\frac{1}{720}} (x^6-36x^5+450x^4-2400x^3+5400x^2-4320x+720) \,\)


    M3: Laguerre Polynomials is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?