# M3: Laguerre Polynomials

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

The Laguerre polynomials are solutions of Laguerre's differential equation:

$x\,y'' + (1 - x)\,y' + n\,y = 0\,$

These are the first few Laguerre polynomials:

$$n$$ $$L_n(x)\,$$
0 1
1 $$-x+1\,$$
2 $${\frac{1}{2}} (x^2-4x+2) \,$$
3 $${\frac{1}{6}} (-x^3+9x^2-18x+6) \,$$
4 $${\frac{1}{24}} (x^4-16x^3+72x^2-96x+24) \,$$
5 $${\frac{1}{120}} (-x^5+25x^4-200x^3+600x^2-600x+120) \,$$
6 $${\frac{1}{720}} (x^6-36x^5+450x^4-2400x^3+5400x^2-4320x+720) \,$$

M3: Laguerre Polynomials is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.