M2: Legendre Polynomials
( \newcommand{\kernel}{\mathrm{null}\,}\)
Each Legendre polynomial Pn(x) is an n=th-degree polynomial. It may be expressed using Rodrigues' formula:
Pn(x)=12nn!dndxn[(x2−1)n]
That these polynomials satisfy the Legendre differential equation follows by differentiating (n+1) times both sides of the identity
(x2−1)ddx(x2−1)n=2nx(x2−1)n
The first few Legendre polynomials are:
n | Pn(x) |
---|---|
0 | 1 |
1 | x |
2 | 12(3x2−1) |
3 | 12(5x3−3x) |
4 | 18(35x4−30x2+3) |
5 | 18(63x5−70x3+15x) |
6 | 116(231x6−315x4+105x2−5) |
7 | 116(429x7−693x5+315x3−35x) |
8 | 1128(6435x8−12012x6+6930x4−1260x2+35) |
9 | 1128(12155x9−25740x7+18018x5−4620x3+315x) |
10 | 1256(46189x10−109395x8+90090x6−30030x4+3465x2−63) |