Character Tables
( \newcommand{\kernel}{\mathrm{null}\,}\)
Nonaxial Groups
These groups are characterized by a lack of a proper rotation axis.
C1 | E |
---|---|
A | 1 |
Cs | E | σh | ||
---|---|---|---|---|
A' | 1 | 1 | x, y, Rz | x2, y2, z2, xy |
A" | 1 | -1 | z, Rx, Ry | yz, xz |
Ci | E | i | ||
---|---|---|---|---|
Ag | 1 | 1 | Rx, Ry, Rz | x2, y2, z2, xy, yz, zx |
Au | 1 | -1 | x,y,z |
Cyclic Cn Groups
These groups are characterized by an n-fold proper rotation axis Cn.
C2 | E | C2 | ||
---|---|---|---|---|
A | 1 | 1 | z, Rz | x2, y2, z2, xy |
B | 1 | -1 | x, y, Rx, Ry | yz,xz |
C3 | E | C3 | C32 | ε=exp(2π/3) | |
---|---|---|---|---|---|
A | 1 | 1 | 1 | z, Rz | x2+y2, z2 |
E | {11 | ϵϵ∗ | ϵ∗ϵ} | (x,y), (Rx,Ry) | (x2-y2, xy), (xz, yz) |
C4 | E | C4 | C2 | C43 | ||
---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | z, Rz | x2+y2, z2 |
B | 1 | -1 | 1 | -1 | x2-y2, xy | |
E | {11 | i−i | −1−1 | −ii} | (x,y), (Rx,Ry) | (xz, yz) |
C5 | E | C5 | C52 | C53 | C54 | ε=exp(i2π/5) | |
---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | Z, Rz | x2+y2, z2 |
E1 | {11 | ϵϵ∗ | ϵ2ϵ∗2 | ϵ∗2ϵ2 | ϵ∗ϵ} | (x, y), (Rx,Ry) | (xz, yz) |
E2 | {11 | ϵ2ϵ∗2 | ϵ∗ϵ | ϵϵ∗ | ϵ∗2ϵ2} | (x2-y2, xy) |
C6 | E | C6 | C3 | C2 | C32 | C65 | ε=exp(i2π/6) | |
---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | 1 | z, Rz | x2+y2, z2 |
B | 1 | -1 | 1 | -1 | 1 | -1 | ||
E1 | {11 | ϵϵ∗ | −ϵ∗−ϵ | −1−1 | −ϵ−ϵ∗ | ϵ∗ϵ} | (Rx,Ry), (x,y) | (xz, yz) |
E2 | {11 | −ϵ∗−ϵ | −ϵ−ϵ∗ | 11 | −ϵ∗−ϵ | −ϵ−ϵ∗} | (x2-y2, xy) |
C7 | E | C7 | C72 | C73 | C74 | C75 | C76 | ε=exp(i2π/7) | |
---|---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | z, Rz | x2+y2, z2 |
E1 | {11 | ϵϵ∗ | ϵ2ϵ∗2 | ϵ3ϵ∗3 | ϵ∗3ϵ3 | ϵ∗2ϵ2 | ϵ∗ϵ} | (Rx,Ry), (x,y) | (xz, yz) |
E2 | {11 | ϵ2ϵ∗2 | ϵ∗3ϵ3 | ϵ∗ϵ | ϵϵ∗ | ϵ3ϵ∗3 | ϵ∗2ϵ2} | (x2-y2, xy) | |
E3 | {11 | ϵ3ϵ∗3 | ϵ∗ϵ | ϵ2ϵ∗2 | ϵ∗2ϵ2 | ϵϵ∗ | ϵ∗3ϵ3} |
C8 | E | C8 | C4 | C83 | C2 | C85 | C43 | C87 | ε=exp(i2π/8) | |
---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | z, Rz | x2+y2, z2 |
B | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
E1 | {11 | ϵϵ∗ | i−i | −ϵ∗−ϵ | −1−1 | −ϵ−ϵ∗ | −ii | ϵ∗ϵ} | (Rx,Ry), (x,y) | (xz, yz) |
E2 | {11 | i−i | −1−1 | −ii | 11 | i−i | −1−1 | −ii} | (x2-y2, xy) | |
E3 | {11 | −ϵ−ϵ∗ | i−i | ϵ∗ϵ | −1−1 | ϵϵ∗ | −ii | −ϵ∗−ϵ} |
Reflection Cnh Groups
These groups are characterized by an n-fold proper rotation axis Cn and a mirror plane σh normal to Cn.
C2h | E | C2 | i | σh | ||
---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | Rz | x2, y2, z2 |
Bg | 1 | -1 | 1 | -1 | Rx, Ry | xz, yz |
Au | 1 | 1 | -1 | -1 | z | |
Bu | 1 | -1 | -1 | 1 | x,y |
C3h | E | C3 | C32 | σh | S3 | S35 | ε=exp(i2π/3) | |
---|---|---|---|---|---|---|---|---|
A' | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
E' | {11 | ϵϵ∗ | ϵ∗ϵ | 11 | ϵϵ∗ | ϵ∗ϵ} | (x,y) | (x2-y2, xy) |
A" | 1 | 1 | 1 | -1 | -1 | -1 | z | |
E" | {11 | ϵϵ∗ | ϵ∗ϵ | −1−1 | −ϵ−ϵ∗ | −ϵ∗−ϵ} | (Rx, Ry) | (xz, yz) |
C4h | E | C4 | C2 | C43 | i | S43 | σh | S4 | ||
---|---|---|---|---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
Bg | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | x2-y2, xy | |
Eg | {11 | i−i | −1−1 | −ii | 11 | i−i | −1−1 | −ii} | (Rx, Ry) | (xz, yz) |
Au | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | z | |
Bu | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | ||
Eu | {11 | i−i | −1−1 | −ii | −1−1 | −ii | 11 | i−i} | (x,y) |
C5h | E | C5 | C52 | C53 | C54 | σh | S5 | S57 | S53 | S59 | ε=exp(i2π/5) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A' | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
E1' | {11 | ϵϵ∗ | ϵ2ϵ∗2 | ϵ∗2ϵ2 | ϵ∗ϵ | 11 | ϵϵ∗ | ϵ2ϵ∗2 | ϵ∗2ϵ2 | ϵ∗ϵ} | (x, y) | |
E2' | {11 | ϵ2ϵ∗2 | ϵ∗ϵ | ϵϵ∗ | ϵ∗2ϵ2 | 11 | ϵ2ϵ∗2 | ϵ∗ϵ | ϵϵ∗ | ϵ∗2ϵ2} | (x2-y2, xy) | |
A" | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | z | |
E1" | {11 | ϵϵ∗ | ϵ2ϵ∗2 | ϵ∗2ϵ2 | ϵ∗ϵ | −1−1 | −ϵ−ϵ∗ | −ϵ2−ϵ∗2 | −ϵ∗2−ϵ2 | −ϵ∗−ϵ} | (Rx, Ry) | (xz, yz) |
E2" | {11 | ϵ2ϵ∗2 | ϵ∗ϵ | ϵϵ∗ | ϵ∗2ϵ2 | −1−1 | −ϵ2−ϵ∗2 | −ϵ∗−ϵ | −ϵ−ϵ∗ | −ϵ∗2−ϵ2} |
C6h | E | C6 | C3 | C2 | C32 | C65 | i | S35 | S65 | σh | S6 | S3 | ε=exp(i2π/6) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
Bg | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
E1g | {11 | ϵϵ∗ | −ϵ∗−ϵ | −1−1 | −ϵ−ϵ∗ | ϵ∗ϵ | 11 | ϵϵ∗ | −ϵ∗−ϵ | −1−1 | −ϵ−ϵ∗ | ϵ∗ϵ} | (Rx, Ry) | (xz, yz) |
E2g | {11 | −ϵ∗−ϵ | −ϵ−ϵ∗ | 11 | −ϵ∗−ϵ | −ϵ−ϵ∗ | 11 | −ϵ∗−ϵ | −ϵ−ϵ∗ | 11 | −ϵ∗−ϵ | −ϵ−ϵ∗} | (x2-y2, xy) | |
Au | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | z | |
Bu | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | ||
E1u | {11 | ϵϵ∗ | −ϵ∗−ϵ | −1−1 | −ϵ−ϵ∗ | ϵ∗ϵ | −1−1 | −ϵ−ϵ∗ | ϵ∗ϵ | 11 | ϵϵ∗ | −ϵ∗−ϵ} | (x, y) | |
E2u | {11 | −ϵ∗−ϵ | −ϵ−ϵ∗ | 11 | −ϵ∗−ϵ | −ϵ−ϵ∗ | −1−1 | ϵ∗ϵ | ϵϵ∗ | −1−1 | ϵ∗ϵ | ϵϵ∗} |
Pyramidal Cnv Groups
These groups are characterized by an n-fold proper rotation axis Cn and n mirror planes σv which contain Cn
C2v | E | C2 | σ(xz) | σ(yz) | ||
---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | z | x2, y2, z2 |
A2 | 1 | 1 | -1 | -1 | Rz | xy |
B1 | 1 | -1 | 1 | -1 | x, Ry | xz |
B2 | 1 | -1 | -1 | 1 | y, Rx | yz |
C3v | E | 2C3 | 3σv | ||
---|---|---|---|---|---|
A1 | 1 | 1 | 1 | z | x2+y2, z2 |
A2 | 1 | 1 | -1 | Rz | |
E | 2 | -1 | 0 | (Rx, Ry), (x,y) | (xz, yz) (x2-y2, xy) |
C4v | E | 2C4 | C2 | 2σv | 2σd | ||
---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | z | x2+y2, z2 |
A2 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1 | 1 | -1 | 1 | 1 | -1 | x2-y2 | |
B2 | 1 | -1 | 1 | -1 | 1 | xy | |
E | 2 | 0 | -2 | 0 | 0 | (Rx, Ry), (x,y) | (xz, yz) |
C5v | E | 2C5 | 2C52 | 5σv | ||
---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | z | x2+y2, z2 |
A2 | 1 | 1 | 1 | -1 | Rz | |
E1 | 2 | 2cos72∘ | 2cos144∘ | 0 | (Rx, Ry), (x,y) | (xz, yz) |
E2 | 2 | 2cos144∘ | 2cos72∘ | 0 | (x2-y2, xy) |
C6v | E | 2C6 | 2C3 | C2 | 3σv | 3σd | ||
---|---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | 1 | z | x2+y2, z2 |
A2 | 1 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
B2 | 1 | -1 | 1 | -1 | -1 | 1 | ||
E1 | 2 | 1 | -1 | -2 | 0 | 0 | (Rx, Ry), (x,y) | (xz, yz) |
E2 | 2 | -1 | -1 | 2 | 0 | 0 | (x2-y2, xy) |
C∞v | E | 2C∞ | ... | ∞σv | ||
---|---|---|---|---|---|---|
A1 | 1 | 1 | ... | 1 | z | x2+y2, z2 |
A2 | 1 | 1 | ... | -1 | Rz | |
E1 | 2 | 2cosϕ | ... | 0 | (x,y), (Rx, Ry) | (xz, yz) |
E2 | 2 | 2cos2ϕ | ... | 0 | (x2-y2, xy) | |
E3 | 2 | 2cos3ϕ | ... | 0 | ||
... | ... | ... | ... | ... |
Dihedral Dn Groups
D2 | E | C2(z) | C2(y) | C2(x) | ||
---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | x2, y2, z2 | |
B1 | 1 | 1 | -1 | -1 | z, Rz | xy |
B2 | 1 | -1 | 1 | -1 | y, Ry | zx |
B3 | 1 | -1 | -1 | 1 | x, Rx | yz |
D3 | E | 2C3 | 3C2 | ||
---|---|---|---|---|---|
A1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | -1 | z, Rz | |
E | 2 | -1 | 0 | (Rx, Ry), (x,y) | (x2-y2, xy) (xz, yz) |
D4 | E | 2C4 | C2(C42) | 2C2' | 2C2" | ||
---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | -1 | -1 | z, Rz | |
B1 | 1 | -1 | 1 | 1 | -1 | x2-y2 | |
B2 | 1 | -1 | 1 | -1 | 1 | xy | |
E | 2 | 0 | -2 | 0 | 0 | (Rx, Ry), (x,y) | (xz, yz) |
2C52
D5 | E | 2C5 | 5C2 | |||
---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | -1 | z, Rz | |
E1 | 2 | 2cos72∘ | 2cos144∘ | (Rx, Ry), (x,y) | (xz, yz) | |
E2 | 2 | 2cos144∘ | 2cos72∘ | (x2-y2, xy) |
D6 | E | 2C6 | 2C3 | C2 | 2C2' | 3C2" | ||
---|---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | 1 | -1 | -1 | z, Rz | |
B1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
B2 | 1 | -1 | 1 | -1 | -1 | 1 | ||
E1 | 2 | 1 | -1 | -2 | 0 | 0 | (Rx, Ry), (x,y) | (xz, yz) |
E2 | 2 | -1 | -1 | 2 | 0 | 0 | (x2-y2, xy) |
Prismatic Dnh Groups
These groups are characterized by
- an n-fold proper rotation axis Cn
- n 2-fold proper rotation axes C2 normal to Cn
- a mirror plane σh normal to Cn and containing the C2 axes.
D2h | E | C2(z) | C2(y) | C2(x) | i | σ(xy) | σ(xz) | σ(yz) | ||
---|---|---|---|---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2, y2, z2 | |
B1g | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | Rz | xy |
B2g | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | Ry | xz |
B3g | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | Rx | yz |
Au | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ||
B1u | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | z | |
B2u | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | y | |
B3u | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | x |
D3h | E | 2C3 | 3C2 | σh | 2S3 | 3σv | ||
---|---|---|---|---|---|---|---|---|
A1' | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2' | 1 | 1 | -1 | 1 | 1 | -1 | Rz | |
E' | 2 | -1 | 0 | 2 | -1 | 0 | (x,y) | (x2-y2, xy) |
A1" | 1 | 1 | 1 | -1 | -1 | -1 | ||
A2" | 1 | 1 | -1 | -1 | -1 | 1 | z | |
E" | 2 | -1 | 0 | -2 | 1 | 0 | (Rx, Ry) | (xz, yz) |
D4h | E | 2C4 | C2 | 2C2' | 2C2" | i | 2S4 | σh | 2σv | σd | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2g | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1g | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | x2-y2 | |
B2g | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | xy | |
Eg | 2 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | (Rx, Ry) | (xz, yz) |
A1u | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | ||
A2u | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | z | |
B1u | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | ||
B2u | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
Eu | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | (x,y) |
D5h | E | 2C5 | 2C52 | 5C2 | σh | 2S5 | 2S53 | 5σv | ||
---|---|---|---|---|---|---|---|---|---|---|
A1' | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2' | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | Rz | |
E1' | 2 | 2cos72∘ | 2cos144∘ | 0 | 2 | 2cos72∘ | 2cos144∘ | (x,y) | ||
E2' | 2 | 2cos144∘ | 2cos72∘ | 0 | 2 | 2cos144∘ | 2cos72∘ | (x2-y2, xy) | ||
A1" | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ||
A2" | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | z | |
E1" | 2 | 2cos72∘ | 2cos144∘ | 0 | -2 | −2cos72∘ | −2cos144∘ | 0 | (Rx, Ry) | (xz, yz) |
E2" | 2 | 2cos144∘ | 2cos72∘ | 0 | -2 | −2cos144∘ | −2cos72∘ | 0 |
D6h | E | 2C6 | 2C3 | C2 | 3C2' | 3C2" | i | 2S3 | 2S6 | σh | 3σd | 3σv | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2g | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1g | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
B2g | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | ||
E1g | 2 | 1 | -1 | -2 | 0 | 0 | 2 | 1 | -1 | -2 | 0 | 0 | (Rx, Ry) | (xz, yz) |
E2g | 2 | -1 | -1 | 2 | 0 | 0 | 2 | -1 | -1 | 2 | 0 | 0 | (x2-y2, xy) | |
A1u | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | ||
A2u | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | z | |
B1u | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | ||
B2u | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | ||
E1u | 2 | 1 | -1 | -2 | 0 | 0 | -2 | -1 | 1 | 2 | 0 | 0 | (x,y) | |
E2u | 2 | -1 | -1 | 2 | 0 | 0 | -2 | 1 | 1 | -2 | 0 | 0 |
D∞h | E | 2C∞ | ... | ∞σv | i | 2S∞ | ... | ∞ C2 | ||
---|---|---|---|---|---|---|---|---|---|---|
Sg+ | 1 | 1 | ... | 1 | 1 | 1 | ... | 1 | x2+y2, z2 | |
Sg- | 1 | 1 | ... | -1 | 1 | 1 | ... | -1 | Rz | |
πg | 2 | 2cosϕ | ... | 0 | 2 | −2cosϕ | ... | 0 | (Rx, Ry) | (xz, yz) |
Dg | 2 | 2cos2ϕ | ... | 0 | 2 | 2cos2ϕ | ... | 0 | (x2-y2, xy) | |
... | ... | ... | ... | ...... | ... | ... | ... | ... | ||
Su+ | 1 | 1 | ... | 1 | -1 | -1 | ... | -1 | z | |
Su- | 1 | 1 | ... | -1 | -1 | -1 | ... | 1 | ||
πu | 2 | 2cosϕ | ... | 0 | -2 | 2cosϕ | ... | 0 | (x, y) | |
Du | 2 | 2cos2ϕ | ... | 0 | -2 | −2cos2ϕ | ... | 0 | ||
... | ... | ... | ... | ... | ... | ... | ... | ... |
Antiprismatic Dnd Groups
These groups are characterized by
- an n-fold proper rotation axis Cn
- n 2-fold proper rotation axes C2 normal to Cn
- n mirror planes σd which contain Cn.
D2d | E | 2S4 | C2 | 2C2' | 2σd | ||
---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1 | 1 | -1 | 1 | 1 | -1 | x2-y2 | |
B2 | 1 | -1 | 1 | -1 | 1 | z | xy |
E | 2 | 0 | -2 | 0 | 0 | (x, y), (Rx, Ry) | (xz, yz) |
D3d | E | 2C3 | 3C2 | i | 2S6 | 3σd | ||
---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2g | 1 | 1 | -1 | 1 | 1 | -1 | Rz | |
Eg | 2 | -1 | 0 | 2 | -1 | 0 | (Rx, Ry) | (x2-y2, xy),(xz, yz) |
A1u | 1 | 1 | 1 | -1 | -1 | -1 | ||
A2u | 1 | 1 | -1 | -1 | -1 | 1 | z | |
Eu | 2 | -1 | 0 | -2 | 1 | 0 | (x, y) |
D4d | E | 2S8 | 2C4 | 2S83 | C2 | 4C2' | 4σd | ||
---|---|---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | ||
B2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | z | |
E1 | 2 | √2 | 0 | −√2 | -2 | 0 | 0 | (x, y) | |
E2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | (x2-y2, xy) | |
E3 | 2 | −√2 | 0 | √2 | -2 | 0 | 0 | (Rx, Ry) | (xz, yz) |
D5d | E | 2C5 | 2C52 | 5C2 | i | 2S103 | 2S10 | 5σd | ||
---|---|---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2g | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | Rz | |
E1g | 2 | 2cos72∘ | 2cos144∘ | 0 | 2 | 2cos72∘ | 2cos144∘ | 0 | (Rx, Ry) | (xz, yz) |
E2g | 2 | 2cos144∘ | 2cos72∘ | 0 | 2 | 2cos144∘ | 2cos72∘ | 0 | (x2-y2, xy) | |
A1u | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ||
A2u | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | z | |
E1u | 2 | 2cos72∘ | 2cos144∘ | 0 | -2 | −2cos72∘ | −2cos144∘ | 0 | (x, y) | |
E2u | 2 | 2cos144∘ | 2cos72∘ | 0 | -2 | −2cos144∘ | −2cos72∘ | 0 |
D6d | E | 2S12 | 2C6 | 2S4 | 2C3 | 2S125 | C2 | 6C2' | 6σd | ||
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | ||
B2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | z | |
E1 | 2 | √3 | 1 | 0 | -1 | −√3 | -2 | 0 | 0 | (x, y) | |
E2 | 2 | 1 | -1 | -2 | -1 | 1 | 2 | 0 | 0 | (x2-y2, xy) | |
E3 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | ||
E4 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | 0 | 0 | ||
E5 | 2 | −√3 | 1 | 0 | -1 | √3 | -2 | 0 | 0 | (Rx, Ry) | (xz, yz) |
Improper Rotation Sn Groups
These groups are characterized by an n-fold improper rotation axis Sn, where n is necessarily even
S4 | E | S4 | C2 | S43 | ||
---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
B | 1 | -1 | 1 | -1 | z | x2-y2, xy |
E | {11 | i−i | −1−1 | −ii} | (x, y); (Rx, Ry) | (xz, yz) |
S6 | E | C3 | C32 | i | S65 | S6 | ||
---|---|---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
Eg | {11 | ϵϵ∗ | ϵ∗ϵ | 11 | ϵϵ∗ | ϵ∗ϵ} | (Rx, Ry) | (x2-y2, xy), (xz, yz) |
Au | 1 | 1 | 1 | -1 | -1 | -1 | z | |
Eu | {11 | ϵϵ∗ | ϵ∗ϵ | −1−1 | −ϵ−ϵ∗ | −ϵ∗−ϵ} | (x, y) |
S8 | E | S8 | C4 | S83 | C2 | S85 | C43 | S87 | ε=exp(i2π/8) | |
---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
B | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | z | |
E1 | {11 | ϵϵ∗ | i−i | −ϵ∗−ϵ | −1−1 | −ϵ−ϵ∗ | −ii | ϵ∗ϵ} | (Rx, Ry), (x, y) | |
E2 | {11 | i−i | −1−1 | −ii | 11 | i−i | −1−1 | −ii} | (x2-y2, xy) | |
E3 | {11 | −ϵ∗−ϵ | −ii | ϵϵ∗ | −1−1 | ϵ∗ϵ | i−i | −ϵ−ϵ∗} | (xz, yz) |
Cubic Groups
These polyhedral groups are characterized by not having a C5 proper rotation axis.
T | E | 4C3 | 4C32 | 3C2 | ||
---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | x2+y2+z2 | |
E | {11 | ϵϵ∗ | ϵ∗ϵ | 11} | (2z2-x2-y2, x2-y2) | |
T | 3 | 0 | 0 | (Rx, Ry, Rz), (x, y, z) | (xz, yz, xy) |
Th | E | 4C3 | 4C32 | 3C2 | i | 4S6 | 4S65 | 3σh | ε=exp(i2π/3) | |
---|---|---|---|---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2+z2 | |
Eg | {11 | ϵϵ∗ | ϵ∗ϵ | 11 | 11 | ϵϵ∗ | ϵ∗ϵ | 11} | (2z2-x2-y2, x2-y2) | |
Tg | 3 | 0 | 0 | -1 | 1 | 0 | 0 | -1 | (Rx, Ry, Rz) | (xz, yz, xy) |
Au | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ||
Eu | {11 | ϵϵ∗ | ϵ∗ϵ | 11 | −1−1 | −ϵ−ϵ∗ | −ϵ∗−ϵ | −1−1} | ||
Tu | 3 | 0 | 0 | -1 | -1 | 0 | 0 | 1 | (x, y, z) |
Td | E | 8C3 | 3C2 | 6S4 | 6σd | ||
---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | x2+y2+z2 | |
A2 | 1 | 1 | 1 | -1 | -1 | ||
E | 2 | -1 | 2 | 0 | 0 | (2z2-x2-y2, x2-y2) | |
T1 | 3 | 0 | -1 | 1 | -1 | (Rx, Ry, Rz) | |
T2 | 3 | 0 | -1 | -1 | 1 | (x, y, z) | (xz, yz, xy) |
O | E | 8C3 | 3C2 | 6C4 | 6C2 | ||
---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | x2+y2+z2 | |
A2 | 1 | 1 | 1 | -1 | -1 | ||
E | 2 | -1 | 2 | 0 | 0 | (2z2-x2-y2, x2-y2) | |
T1 | 3 | 0 | -1 | 1 | -1 | (Rx, Ry, Rz), (x, y, z) | |
T2 | 3 | 0 | -1 | -1 | 1 | (xz, yz, xy) |
Oh | E | 8C2 | 6C2 | 6C4 | 3C2(C42) | i | 6S4 | 8S6 | 3σh | 6σd | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2+z2 | |
A2g | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | ||
Eg | 2 | -1 | 0 | 0 | 2 | 2 | 0 | -1 | 2 | 0 | (2z2-x2-y2, x2-y2) | |
T1g | 3 | 0 | -1 | 1 | -1 | 3 | 1 | 0 | -1 | -1 | (Rx, Ry, Rz) | |
T2g | 3 | 0 | 1 | -1 | -1 | 3 | -1 | 0 | -1 | 1 | (xz, yz, xy) | |
A1u | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | ||
A2u | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | ||
Eu | 2 | -1 | 0 | 0 | 2 | -2 | 0 | 1 | -2 | 0 | ||
T1u | 3 | 0 | -1 | 1 | -1 | -3 | -1 | 0 | 1 | 1 | (x, y, z) | |
T2u | 3 | 0 | 1 | -1 | -1 | -3 | 1 | 0 | 1 | -1 |