Character Tables
- Page ID
- 2181
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
Nonaxial Groups
These groups are characterized by a lack of a proper rotation axis.
\(C_1\) | E |
---|---|
A | 1 |
\(C_s\) | E | σh | ||
---|---|---|---|---|
A' | 1 | 1 | x, y, Rz | x2, y2, z2, xy |
A" | 1 | -1 | z, Rx, Ry | yz, xz |
\(C_i\) | E | i | ||
---|---|---|---|---|
Ag | 1 | 1 | Rx, Ry, Rz | x2, y2, z2, xy, yz, zx |
Au | 1 | -1 | x,y,z |
Cyclic \(C_n\) Groups
These groups are characterized by an n-fold proper rotation axis \(C_n\).
C2 | E | C2 | ||
---|---|---|---|---|
A | 1 | 1 | z, Rz | x2, y2, z2, xy |
B | 1 | -1 | x, y, Rx, Ry | yz,xz |
C3 | E | C3 | C32 | ε=exp(2π/3) | |
---|---|---|---|---|---|
A | 1 | 1 | 1 | z, Rz | x2+y2, z2 |
E | \(\left\{ \begin{matrix} 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\left. \begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix} \right\}\) | (x,y), (Rx,Ry) | (x2-y2, xy), (xz, yz) |
C4 | E | C4 | C2 | C43 | ||
---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | z, Rz | x2+y2, z2 |
B | 1 | -1 | 1 | -1 | x2-y2, xy | |
E | \(\left\{ \begin{matrix} 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} \;i \\ -i\end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\left. \begin{matrix} -i \\ \;i \end{matrix} \right\}\) | (x,y), (Rx,Ry) | (xz, yz) |
C5 | E | C5 | C52 | C53 | C54 | ε=exp(i2π/5) | |
---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | Z, Rz | x2+y2, z2 |
E1 | \(\left\{ \begin{matrix}\sf 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^2\; \\ \epsilon^{*2} \end{matrix}\) | \(\begin{matrix} \epsilon^{*2} \\ \epsilon^2\; \end{matrix}\) | \(\left. \begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix} \right\}\) | (x, y), (Rx,Ry) | (xz, yz) |
E2 | \(\left\{ \begin{matrix}\sf 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} \epsilon^2\; \\ \epsilon^{*2} \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\left. \begin{matrix} \epsilon^{*2} \\ \epsilon^2\; \end{matrix} \right\}\) | (x2-y2, xy) |
C6 | E | C6 | C3 | C2 | C32 | C65 | ε=exp(i2π/6) | |
---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | 1 | z, Rz | x2+y2, z2 |
B | 1 | -1 | 1 | -1 | 1 | -1 | ||
E1 | \(\left\{ \begin{matrix} 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} -\epsilon^* \\ -\epsilon\;\end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\left. \begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix} \right\}\) | (Rx,Ry), (x,y) | (xz, yz) |
E2 | \(\left\{ \begin{matrix} 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} -\epsilon^*\; \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} -\epsilon^*\; \\ -\epsilon\; \end{matrix}\) | \(\left. \begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix} \right\}\) | (x2-y2, xy) |
C7 | E | C7 | C72 | C73 | C74 | C75 | C76 | ε=exp(i2π/7) | |
---|---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | z, Rz | x2+y2, z2 |
E1 | \(\left\{ \begin{matrix} 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^2\; \\ \epsilon^{*2} \end{matrix}\) | \(\begin{matrix} \epsilon^3\; \\ \epsilon^{*3} \end{matrix}\) | \(\begin{matrix} \epsilon^{*3}\; \\ \epsilon^3\; \end{matrix}\) | \(\begin{matrix} \epsilon^{*2}\; \\ \epsilon^2\; \end{matrix}\) | \(\left. \begin{matrix} \epsilon^{*} \\ \epsilon\; \end{matrix} \right\}\) | (Rx,Ry), (x,y) | (xz, yz) |
E2 | \(\left\{ \begin{matrix} 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} \epsilon^2\; \\ \epsilon^{*2} \end{matrix}\) | \(\begin{matrix} \epsilon^{*3}\; \\ \epsilon^3\; \end{matrix}\) | \(\begin{matrix} \epsilon^{*} \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^3\; \\ \epsilon^{*3} \end{matrix}\) | \(\left. \begin{matrix} \epsilon^{*2}\; \\ \epsilon^2\; \end{matrix} \right\}\) | (x2-y2, xy) | |
E3 | \(\left\{ \begin{matrix} 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} \epsilon^3\; \\ \epsilon^{*3} \end{matrix}\) | \(\begin{matrix} \epsilon^{*} \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} \epsilon^2\; \\ \epsilon^{*2} \end{matrix}\) | \(\begin{matrix} \epsilon^{*2}\; \\ \epsilon^2\; \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\left. \begin{matrix} \epsilon^{*3}\; \\ \epsilon^3\; \end{matrix} \right\}\) |
C8 | E | C8 | C4 | C83 | C2 | C85 | C43 | C87 | ε=exp(i2π/8) | |
---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | z, Rz | x2+y2, z2 |
B | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
E1 | \(\left\{ \begin{matrix} 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^*\end{matrix}\) | \(\begin{matrix} \;i \\ -i \end{matrix}\) | \(\begin{matrix} -\epsilon^* \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} -i \\ \;i \end{matrix}\) | \(\left. \begin{matrix} \epsilon^{*} \\ \epsilon\; \end{matrix} \right\}\) | (Rx,Ry), (x,y) | (xz, yz) |
E2 | \(\left\{ \begin{matrix} 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} \;i \\ -i \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -i \\ \;i \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} \;i \\ -i \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\left. \begin{matrix} -i \\ \;i \end{matrix} \right\}\) | (x2-y2, xy) | |
E3 | \(\left\{ \begin{matrix} 1 \\ 1 \end{matrix} \right.\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} \;i \\ -i\; \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} -i \\ \;i \end{matrix}\) | \(\left. \begin{matrix} -\epsilon^* \\ -\epsilon\; \end{matrix} \right\}\) |
Reflection \(C_{nh}\) Groups
These groups are characterized by an n-fold proper rotation axis \(C_n\) and a mirror plane \(\sigma_h\) normal to \(C_n\).
\(C_{2h}\) | E | C2 | i | σh | ||
---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | Rz | x2, y2, z2 |
Bg | 1 | -1 | 1 | -1 | Rx, Ry | xz, yz |
Au | 1 | 1 | -1 | -1 | z | |
Bu | 1 | -1 | -1 | 1 | x,y |
\(C_{3h}\) | E | C3 | C32 | σh | S3 | S35 | ε=exp(i2π/3) | |
---|---|---|---|---|---|---|---|---|
A' | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
E' | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\left.\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\right\}\) | (x,y) | (x2-y2, xy) |
A" | 1 | 1 | 1 | -1 | -1 | -1 | z | |
E" | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\left.\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\right\}\) | (Rx, Ry) | (xz, yz) |
\(C_{4h}\) | E | C4 | C2 | C43 | i | S43 | σh | S4 | ||
---|---|---|---|---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
Bg | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | x2-y2, xy | |
Eg | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \; i \\ -i \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -i \\ \; i \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} \; i \\ -i \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\left.\begin{matrix} -i \\ \; i \end{matrix}\right\}\) | (Rx, Ry) | (xz, yz) |
Au | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | z | |
Bu | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | ||
Eu | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \; i \\ -i \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -i \\ \; i \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -i \\ \; i \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\left.\begin{matrix} \; i \\ -i \end{matrix}\right\}\) | (x,y) |
\(C_{5h}\) | E | C5 | C52 | C53 | C54 | σh | S5 | S57 | S53 | S59 | ε=exp(i2π/5) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A' | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
E1' | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^{2}\; \\ \epsilon^{*2} \end{matrix}\) | \(\begin{matrix} \epsilon^{*2} \\ \epsilon^2\; \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^{2}\; \\ \epsilon^{*2} \end{matrix}\) | \(\begin{matrix} \epsilon^{*2} \\ \epsilon^2\; \end{matrix}\) | \(\left.\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\right\}\) | (x, y) | |
E2' | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon^{2}\; \\ \epsilon^{*2} \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^{*2} \\ \epsilon^2\; \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} \epsilon^{2}\; \\ \epsilon^{*2} \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\left.\begin{matrix} \epsilon^{*2} \\ \epsilon^2\; \end{matrix}\right\}\) | (x2-y2, xy) | |
A" | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | z | |
E1" | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^{2}\; \\ \epsilon^{*2} \end{matrix}\) | \(\begin{matrix} \epsilon^{*2} \\ \epsilon^2\; \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} -\epsilon^{2}\; \\ -\epsilon^{*2} \end{matrix}\) | \(\begin{matrix} -\epsilon^{*2} \\ -\epsilon^{2}\; \end{matrix}\) | \(\left.\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\right\}\) | (Rx, Ry) | (xz, yz) |
E2" | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon^{2}\; \\ \epsilon^{*2} \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^{*2} \\ \epsilon^2\; \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon^{2}\; \\ -\epsilon^{*2} \end{matrix}\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\left.\begin{matrix} -\epsilon^{*2} \\ -\epsilon^{2}\; \end{matrix}\right\}\) |
\(C_{6h}\) | E | C6 | C3 | C2 | C32 | C65 | i | S35 | S65 | σh | S6 | S3 | ε=exp(i2π/6) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
Bg | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
E1g | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\left.\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\right\}\) | (Rx, Ry) | (xz, yz) |
E2g | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} -\epsilon^* \\ -\epsilon\; \end{matrix}\) | \(\left.\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\right\}\) | (x2-y2, xy) | |
Au | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | z | |
Bu | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | ||
E1u | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\left.\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\right\}\) | (x, y) | |
E2u | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\left.\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\right\}\) |
Pyramidal \(C_{nv}\) Groups
These groups are characterized by an n-fold proper rotation axis \(C_n\) and n mirror planes \(σ_v\) which contain \(C_n\)
\(C_{2v}\) | E | C2 | σ(xz) | σ(yz) | ||
---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | z | x2, y2, z2 |
A2 | 1 | 1 | -1 | -1 | Rz | xy |
B1 | 1 | -1 | 1 | -1 | x, Ry | xz |
B2 | 1 | -1 | -1 | 1 | y, Rx | yz |
\(C_{3v}\) | E | 2C3 | 3σv | ||
---|---|---|---|---|---|
A1 | 1 | 1 | 1 | z | x2+y2, z2 |
A2 | 1 | 1 | -1 | Rz | |
E | 2 | -1 | 0 | (Rx, Ry), (x,y) | (xz, yz) (x2-y2, xy) |
\(C_{4v}\) | E | 2C4 | C2 | 2σv | 2σd | ||
---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | z | x2+y2, z2 |
A2 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1 | 1 | -1 | 1 | 1 | -1 | x2-y2 | |
B2 | 1 | -1 | 1 | -1 | 1 | xy | |
E | 2 | 0 | -2 | 0 | 0 | (Rx, Ry), (x,y) | (xz, yz) |
\(C_{5v}\) | E | 2C5 | 2C52 | 5σv | ||
---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | z | x2+y2, z2 |
A2 | 1 | 1 | 1 | -1 | Rz | |
E1 | 2 | \(2\cos 72^\circ\) | \(2\cos 144^\circ\) | 0 | (Rx, Ry), (x,y) | (xz, yz) |
E2 | 2 | \(2\cos{144^\circ}\) | \(2\cos 72^\circ\) | 0 | (x2-y2, xy) |
\(C_{6v}\) | E | 2C6 | 2C3 | C2 | 3σv | 3σd | ||
---|---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | 1 | z | x2+y2, z2 |
A2 | 1 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
B2 | 1 | -1 | 1 | -1 | -1 | 1 | ||
E1 | 2 | 1 | -1 | -2 | 0 | 0 | (Rx, Ry), (x,y) | (xz, yz) |
E2 | 2 | -1 | -1 | 2 | 0 | 0 | (x2-y2, xy) |
C∞v | E | 2C∞ | ... | ∞σv | ||
---|---|---|---|---|---|---|
A1 | 1 | 1 | ... | 1 | z | x2+y2, z2 |
A2 | 1 | 1 | ... | -1 | Rz | |
E1 | 2 | \(2\cos{\phi}\) | ... | 0 | (x,y), (Rx, Ry) | (xz, yz) |
E2 | 2 | \(2\cos{2\phi}\) | ... | 0 | (x2-y2, xy) | |
E3 | 2 | \(2\cos{3\phi}\) | ... | 0 | ||
... | ... | ... | ... | ... |
Dihedral \(D_n\) Groups
\(D_2\) | E | C2(z) | C2(y) | C2(x) | ||
---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | x2, y2, z2 | |
B1 | 1 | 1 | -1 | -1 | z, Rz | xy |
B2 | 1 | -1 | 1 | -1 | y, Ry | zx |
B3 | 1 | -1 | -1 | 1 | x, Rx | yz |
\(D_3\) | E | 2C3 | 3C2 | ||
---|---|---|---|---|---|
A1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | -1 | z, Rz | |
E | 2 | -1 | 0 | (Rx, Ry), (x,y) | (x2-y2, xy) (xz, yz) |
\(D_4\) | E | 2C4 | C2(C42) | 2C2' | 2C2" | ||
---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | -1 | -1 | z, Rz | |
B1 | 1 | -1 | 1 | 1 | -1 | x2-y2 | |
B2 | 1 | -1 | 1 | -1 | 1 | xy | |
E | 2 | 0 | -2 | 0 | 0 | (Rx, Ry), (x,y) | (xz, yz) |
2C52
\(D_5\) | E | 2C5 | 5C2 | |||
---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | -1 | z, Rz | |
E1 | 2 | \(2\cos{72^\circ}\) | \(2\cos{144^\circ}\) | (Rx, Ry), (x,y) | (xz, yz) | |
E2 | 2 | \(2\cos{144^\circ}\) | \(2\cos{72^\circ}\) | (x2-y2, xy) |
\(D_6\) | E | 2C6 | 2C3 | C2 | 2C2' | 3C2" | ||
---|---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | 1 | -1 | -1 | z, Rz | |
B1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
B2 | 1 | -1 | 1 | -1 | -1 | 1 | ||
E1 | 2 | 1 | -1 | -2 | 0 | 0 | (Rx, Ry), (x,y) | (xz, yz) |
E2 | 2 | -1 | -1 | 2 | 0 | 0 | (x2-y2, xy) |
Prismatic \(D_{nh}\) Groups
These groups are characterized by
- an n-fold proper rotation axis \(C_n\)
- n 2-fold proper rotation axes \(C_2\) normal to \(C_n\)
- a mirror plane \(\sigma_h\) normal to \(C_n\) and containing the \(C_2\) axes.
\(D_{2h}\) | E | C2(z) | C2(y) | C2(x) | i | σ(xy) | σ(xz) | σ(yz) | ||
---|---|---|---|---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2, y2, z2 | |
B1g | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | Rz | xy |
B2g | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | Ry | xz |
B3g | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | Rx | yz |
Au | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ||
B1u | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | z | |
B2u | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | y | |
B3u | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | x |
\(D_{3h}\) | E | 2C3 | 3C2 | σh | 2S3 | 3σv | ||
---|---|---|---|---|---|---|---|---|
A1' | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2' | 1 | 1 | -1 | 1 | 1 | -1 | Rz | |
E' | 2 | -1 | 0 | 2 | -1 | 0 | (x,y) | (x2-y2, xy) |
A1" | 1 | 1 | 1 | -1 | -1 | -1 | ||
A2" | 1 | 1 | -1 | -1 | -1 | 1 | z | |
E" | 2 | -1 | 0 | -2 | 1 | 0 | (Rx, Ry) | (xz, yz) |
\(D_{4h}\) | E | 2C4 | C2 | 2C2' | 2C2" | i | 2S4 | σh | 2σv | σd | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2g | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1g | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | x2-y2 | |
B2g | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | xy | |
Eg | 2 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | (Rx, Ry) | (xz, yz) |
A1u | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | ||
A2u | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | z | |
B1u | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | ||
B2u | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
Eu | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | (x,y) |
\(D_{5h}\) | E | 2C5 | 2C52 | 5C2 | σh | 2S5 | 2S53 | 5σv | ||
---|---|---|---|---|---|---|---|---|---|---|
A1' | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2' | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | Rz | |
E1' | 2 | \(2\cos{72^\circ}\) | \(2\cos{144^\circ}\) | 0 | 2 | \(2\cos{72^\circ}\) | \(2\cos{144^\circ}\) | (x,y) | ||
E2' | 2 | \(2\cos{144^\circ}\) | \(2\cos{72^\circ}\) | 0 | 2 | \(2\cos{144^\circ}\) | \(2\cos{72^\circ}\) | (x2-y2, xy) | ||
A1" | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ||
A2" | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | z | |
E1" | 2 | \(2\cos{72^\circ}\) | \(2\cos{144^\circ}\) | 0 | -2 | \(-2\cos{72^\circ}\) | \(-2\cos{144^\circ}\) | 0 | (Rx, Ry) | (xz, yz) |
E2" | 2 | \(2\cos{144^\circ}\) | \(2\cos{72^\circ}\) | 0 | -2 | \(-2\cos{144^\circ}\) | \(-2\cos{72^\circ}\) | 0 |
D6h | E | 2C6 | 2C3 | C2 | 3C2' | 3C2" | i | 2S3 | 2S6 | σh | 3σd | 3σv | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2g | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1g | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | ||
B2g | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | ||
E1g | 2 | 1 | -1 | -2 | 0 | 0 | 2 | 1 | -1 | -2 | 0 | 0 | (Rx, Ry) | (xz, yz) |
E2g | 2 | -1 | -1 | 2 | 0 | 0 | 2 | -1 | -1 | 2 | 0 | 0 | (x2-y2, xy) | |
A1u | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | ||
A2u | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | z | |
B1u | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | ||
B2u | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | ||
E1u | 2 | 1 | -1 | -2 | 0 | 0 | -2 | -1 | 1 | 2 | 0 | 0 | (x,y) | |
E2u | 2 | -1 | -1 | 2 | 0 | 0 | -2 | 1 | 1 | -2 | 0 | 0 |
D∞h | E | 2C∞ | ... | ∞σv | i | 2S∞ | ... | ∞ C2 | ||
---|---|---|---|---|---|---|---|---|---|---|
Sg+ | 1 | 1 | ... | 1 | 1 | 1 | ... | 1 | x2+y2, z2 | |
Sg- | 1 | 1 | ... | -1 | 1 | 1 | ... | -1 | Rz | |
πg | 2 | \(2\cos{\phi}\) | ... | 0 | 2 | \(-2\cos{\phi}\) | ... | 0 | (Rx, Ry) | (xz, yz) |
Dg | 2 | \(2\cos{2\phi}\) | ... | 0 | 2 | \(2\cos{2\phi}\) | ... | 0 | (x2-y2, xy) | |
... | ... | ... | ... | ...... | ... | ... | ... | ... | ||
Su+ | 1 | 1 | ... | 1 | -1 | -1 | ... | -1 | z | |
Su- | 1 | 1 | ... | -1 | -1 | -1 | ... | 1 | ||
πu | 2 | \(2\cos{\phi}\) | ... | 0 | -2 | \(2\cos{\phi}\) | ... | 0 | (x, y) | |
Du | 2 | \(2\cos{2\phi}\) | ... | 0 | -2 | \(-2\cos{2\phi}\) | ... | 0 | ||
... | ... | ... | ... | ... | ... | ... | ... | ... |
Antiprismatic \(D_{nd}\) Groups
These groups are characterized by
- an n-fold proper rotation axis Cn
- n 2-fold proper rotation axes C2 normal to Cn
- n mirror planes σd which contain Cn.
D2d | E | 2S4 | C2 | 2C2' | 2σd | ||
---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1 | 1 | -1 | 1 | 1 | -1 | x2-y2 | |
B2 | 1 | -1 | 1 | -1 | 1 | z | xy |
E | 2 | 0 | -2 | 0 | 0 | (x, y), (Rx, Ry) | (xz, yz) |
D3d | E | 2C3 | 3C2 | i | 2S6 | 3σd | ||
---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2g | 1 | 1 | -1 | 1 | 1 | -1 | Rz | |
Eg | 2 | -1 | 0 | 2 | -1 | 0 | (Rx, Ry) | (x2-y2, xy),(xz, yz) |
A1u | 1 | 1 | 1 | -1 | -1 | -1 | ||
A2u | 1 | 1 | -1 | -1 | -1 | 1 | z | |
Eu | 2 | -1 | 0 | -2 | 1 | 0 | (x, y) |
D4d | E | 2S8 | 2C4 | 2S83 | C2 | 4C2' | 4σd | ||
---|---|---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | ||
B2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | z | |
E1 | 2 | \(\sqrt{2}\) | 0 | \(-\sqrt{2}\) | -2 | 0 | 0 | (x, y) | |
E2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | (x2-y2, xy) | |
E3 | 2 | \(-\sqrt{2}\) | 0 | \(\sqrt{2}\) | -2 | 0 | 0 | (Rx, Ry) | (xz, yz) |
D5d | E | 2C5 | 2C52 | 5C2 | i | 2S103 | 2S10 | 5σd | ||
---|---|---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2g | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | Rz | |
E1g | 2 | \(2\cos 72^\circ\) | \(2\cos 144^\circ\) | 0 | 2 | \(2\cos 72^\circ\) | \(2\cos 144^\circ\) | 0 | (Rx, Ry) | (xz, yz) |
E2g | 2 | \(2\cos 144^\circ\) | \(2\cos 72^\circ\) | 0 | 2 | \(2\cos 144^\circ\) | \(2\cos 72^\circ\) | 0 | (x2-y2, xy) | |
A1u | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ||
A2u | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | z | |
E1u | 2 | \(2\cos 72^\circ\) | \(2\cos 144^\circ\) | 0 | -2 | \(-2\cos 72^\circ\) | \(-2\cos 144^\circ\) | 0 | (x, y) | |
E2u | 2 | \(2\cos 144^\circ\) | \(2\cos 72^\circ\) | 0 | -2 | \(-2\cos 144^\circ\) | \(-2\cos 72^\circ\) | 0 |
D6d | E | 2S12 | 2C6 | 2S4 | 2C3 | 2S125 | C2 | 6C2' | 6σd | ||
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | Rz | |
B1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | ||
B2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | z | |
E1 | 2 | \(\sqrt{3}\) | 1 | 0 | -1 | \(-\sqrt{3}\) | -2 | 0 | 0 | (x, y) | |
E2 | 2 | 1 | -1 | -2 | -1 | 1 | 2 | 0 | 0 | (x2-y2, xy) | |
E3 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | ||
E4 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | 0 | 0 | ||
E5 | 2 | \(-\sqrt{3}\) | 1 | 0 | -1 | \(\sqrt{3}\) | -2 | 0 | 0 | (Rx, Ry) | (xz, yz) |
Improper Rotation \(S_n\) Groups
These groups are characterized by an n-fold improper rotation axis \(S_n\), where \(n\) is necessarily even
\(S_4\) | E | S4 | C2 | S43 | ||
---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
B | 1 | -1 | 1 | -1 | z | x2-y2, xy |
E | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \; i \\ -i \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\left.\begin{matrix} -i \\ \; i \end{matrix}\right\}\) | (x, y); (Rx, Ry) | (xz, yz) |
S6 | E | C3 | C32 | i | S65 | S6 | ||
---|---|---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
Eg | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\left.\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\right\}\) | (Rx, Ry) | (x2-y2, xy), (xz, yz) |
Au | 1 | 1 | 1 | -1 | -1 | -1 | z | |
Eu | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\left.\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\right\}\) | (x, y) |
S8 | E | S8 | C4 | S83 | C2 | S85 | C43 | S87 | ε=exp(i2π/8) | |
---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rz | x2+y2, z2 |
B | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | z | |
E1 | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \; i \\ -i \end{matrix}\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} -i \\ \; i \end{matrix}\) | \(\left.\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\right\}\) | (Rx, Ry), (x, y) | |
E2 | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \; i \\ -i \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -i \\ \; i \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} \; i \\ -i \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\left.\begin{matrix} -i \\ \; i \end{matrix}\right\}\) | (x2-y2, xy) | |
E3 | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\begin{matrix} -i \\ \; i \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} \; i \\ -i \end{matrix}\) | \(\left.\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\right\}\) | (xz, yz) |
Cubic Groups
These polyhedral groups are characterized by not having a \(C_5\) proper rotation axis.
\(T\) | E | 4C3 | 4C32 | 3C2 | ||
---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | x2+y2+z2 | |
E | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\left.\begin{matrix} 1 \\ 1 \end{matrix}\right\}\) | (2z2-x2-y2, x2-y2) | |
T | 3 | 0 | 0 | (Rx, Ry, Rz), (x, y, z) | (xz, yz, xy) |
Th | E | 4C3 | 4C32 | 3C2 | i | 4S6 | 4S65 | 3σh | ε=exp(i2π/3) | |
---|---|---|---|---|---|---|---|---|---|---|
Ag | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2+z2 | |
Eg | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\left.\begin{matrix} 1 \\ 1 \end{matrix}\right\}\) | (2z2-x2-y2, x2-y2) | |
Tg | 3 | 0 | 0 | -1 | 1 | 0 | 0 | -1 | (Rx, Ry, Rz) | (xz, yz, xy) |
Au | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ||
Eu | \(\left\{\begin{matrix} 1 \\ 1 \end{matrix}\right.\) | \(\begin{matrix} \epsilon\; \\ \epsilon^* \end{matrix}\) | \(\begin{matrix} \epsilon^* \\ \epsilon\; \end{matrix}\) | \(\begin{matrix} 1 \\ 1 \end{matrix}\) | \(\begin{matrix} -1 \\ -1 \end{matrix}\) | \(\begin{matrix} -\epsilon\; \\ -\epsilon^* \end{matrix}\) | \(\begin{matrix} -\epsilon^{*} \\ -\epsilon\; \end{matrix}\) | \(\left.\begin{matrix} -1 \\ -1 \end{matrix}\right\}\) | ||
Tu | 3 | 0 | 0 | -1 | -1 | 0 | 0 | 1 | (x, y, z) |
Td | E | 8C3 | 3C2 | 6S4 | 6σd | ||
---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | x2+y2+z2 | |
A2 | 1 | 1 | 1 | -1 | -1 | ||
E | 2 | -1 | 2 | 0 | 0 | (2z2-x2-y2, x2-y2) | |
T1 | 3 | 0 | -1 | 1 | -1 | (Rx, Ry, Rz) | |
T2 | 3 | 0 | -1 | -1 | 1 | (x, y, z) | (xz, yz, xy) |
O | E | 8C3 | 3C2 | 6C4 | 6C2 | ||
---|---|---|---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 | 1 | x2+y2+z2 | |
A2 | 1 | 1 | 1 | -1 | -1 | ||
E | 2 | -1 | 2 | 0 | 0 | (2z2-x2-y2, x2-y2) | |
T1 | 3 | 0 | -1 | 1 | -1 | (Rx, Ry, Rz), (x, y, z) | |
T2 | 3 | 0 | -1 | -1 | 1 | (xz, yz, xy) |
Oh | E | 8C2 | 6C2 | 6C4 | 3C2(C42) | i | 6S4 | 8S6 | 3σh | 6σd | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1g | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2+z2 | |
A2g | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | ||
Eg | 2 | -1 | 0 | 0 | 2 | 2 | 0 | -1 | 2 | 0 | (2z2-x2-y2, x2-y2) | |
T1g | 3 | 0 | -1 | 1 | -1 | 3 | 1 | 0 | -1 | -1 | (Rx, Ry, Rz) | |
T2g | 3 | 0 | 1 | -1 | -1 | 3 | -1 | 0 | -1 | 1 | (xz, yz, xy) | |
A1u | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | ||
A2u | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | ||
Eu | 2 | -1 | 0 | 0 | 2 | -2 | 0 | 1 | -2 | 0 | ||
T1u | 3 | 0 | -1 | 1 | -1 | -3 | -1 | 0 | 1 | 1 | (x, y, z) | |
T2u | 3 | 0 | 1 | -1 | -1 | -3 | 1 | 0 | 1 | -1 |