Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Character Tables

( \newcommand{\kernel}{\mathrm{null}\,}\)

 

Nonaxial Groups

These groups are characterized by a lack of a proper rotation axis.

C1 E
A 1

 

Cs E σh    
A' 1 1 x, y, Rz x2, y2, z2, xy
A" 1 -1 z, Rx, Ry yz, xz

 

Ci E i    
Ag 1 1 Rx, Ry, Rz x2, y2, z2, xy, yz, zx
Au 1 -1 x,y,z  

Cyclic Cn Groups

These groups are characterized by an n-fold proper rotation axis Cn.

C2 E C2    
A 1 1 z, Rz x2, y2, z2, xy
B 1 -1 x, y, Rx, Ry yz,xz

 

C3 E C3 C32   ε=exp(2π/3)
A 1 1 1 z, Rz x2+y2, z2
E {11 ϵϵ ϵϵ} (x,y), (Rx,Ry) (x2-y2, xy), (xz, yz)

 

C4 E C4 C2 C43    
A 1 1 1 1 z, Rz x2+y2, z2
B 1 -1 1 -1   x2-y2, xy
E {11 ii 11 ii} (x,y), (Rx,Ry) (xz, yz)

 

C5 E C5 C52 C53 C54   ε=exp(i2π/5)
A 1 1 1 1 1 Z, Rz x2+y2, z2
E1 {11 ϵϵ ϵ2ϵ2 ϵ2ϵ2 ϵϵ} (x, y), (Rx,Ry) (xz, yz)
E2 {11 ϵ2ϵ2 ϵϵ ϵϵ ϵ2ϵ2}   (x2-y2, xy)

 

C6 E C6 C3 C2 C32 C65   ε=exp(i2π/6)
A 1 1 1 1 1 1 z, Rz x2+y2, z2
B 1 -1 1 -1 1 -1    
E1 {11 ϵϵ ϵϵ 11 ϵϵ ϵϵ} (Rx,Ry), (x,y) (xz, yz)
E2 {11 ϵϵ ϵϵ 11 ϵϵ ϵϵ}   (x2-y2, xy)

 

C7 E C7 C72 C73 C74 C75 C76   ε=exp(i2π/7)
A 1 1 1 1 1 1 1 z, Rz x2+y2, z2
E1 {11 ϵϵ ϵ2ϵ2 ϵ3ϵ3 ϵ3ϵ3 ϵ2ϵ2 ϵϵ} (Rx,Ry), (x,y) (xz, yz)
E2 {11 ϵ2ϵ2 ϵ3ϵ3 ϵϵ ϵϵ ϵ3ϵ3 ϵ2ϵ2}   (x2-y2, xy)
E3 {11 ϵ3ϵ3 ϵϵ ϵ2ϵ2 ϵ2ϵ2 ϵϵ ϵ3ϵ3}    

 

C8 E C8 C4 C83 C2 C85 C43 C87   ε=exp(i2π/8)
A 1 1 1 1 1 1 1 1 z, Rz x2+y2, z2
B 1 -1 1 -1 1 -1 1 -1    
E1 {11 ϵϵ ii ϵϵ 11 ϵϵ ii ϵϵ} (Rx,Ry), (x,y) (xz, yz)
E2 {11 ii 11 ii 11 ii 11 ii}   (x2-y2, xy)
E3 {11 ϵϵ ii ϵϵ 11 ϵϵ ii ϵϵ}    

Reflection Cnh Groups

These groups are characterized by an n-fold proper rotation axis Cn and a mirror plane σh normal to Cn.

C2h E C2 i σh    
Ag 1 1 1 1 Rz x2, y2, z2
Bg 1 -1 1 -1 Rx, Ry xz, yz
Au 1 1 -1 -1 z  
Bu 1 -1 -1 1 x,y  

 

C3h E C3 C32 σh S3 S35   ε=exp(i2π/3)
A' 1 1 1 1 1 1 Rz x2+y2, z2
E' {11 ϵϵ ϵϵ 11 ϵϵ ϵϵ} (x,y) (x2-y2, xy)
A" 1 1 1 -1 -1 -1 z  
E" {11 ϵϵ ϵϵ 11 ϵϵ ϵϵ} (Rx, Ry) (xz, yz)

 

C4h E C4 C2 C43 i S43 σh S4    
Ag 1 1 1 1 1 1 1 1 Rz x2+y2, z2
Bg 1 -1 1 -1 1 -1 1 -1   x2-y2, xy
Eg {11 ii 11 ii 11 ii 11 ii} (Rx, Ry) (xz, yz)
Au 1 1 1 1 -1 -1 -1 -1 z  
Bu 1 -1 1 -1 -1 1 -1 1    
Eu {11 ii 11 ii 11 ii 11 ii} (x,y)  

 

C5h E C5 C52 C53 C54 σh S5 S57 S53 S59   ε=exp(i2π/5)
A' 1 1 1 1 1 1 1 1 1 1 Rz x2+y2, z2
E1' {11 ϵϵ ϵ2ϵ2 ϵ2ϵ2 ϵϵ 11 ϵϵ ϵ2ϵ2 ϵ2ϵ2 ϵϵ} (x, y)  
E2' {11 ϵ2ϵ2 ϵϵ ϵϵ ϵ2ϵ2 11 ϵ2ϵ2 ϵϵ ϵϵ ϵ2ϵ2}   (x2-y2, xy)
A" 1 1 1 1 1 -1 -1 -1 -1 -1 z  
E1" {11 ϵϵ ϵ2ϵ2 ϵ2ϵ2 ϵϵ 11 ϵϵ ϵ2ϵ2 ϵ2ϵ2 ϵϵ} (Rx, Ry) (xz, yz)
E2" {11 ϵ2ϵ2 ϵϵ ϵϵ ϵ2ϵ2 11 ϵ2ϵ2 ϵϵ ϵϵ ϵ2ϵ2}    

 

C6h E C6 C3 C2 C32 C65 i S35 S65 σh S6 S3   ε=exp(i2π/6)
Ag 1 1 1 1 1 1 1 1 1 1 1 1 Rz x2+y2, z2
Bg 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1    
E1g {11 ϵϵ ϵϵ 11 ϵϵ ϵϵ 11 ϵϵ ϵϵ 11 ϵϵ ϵϵ} (Rx, Ry) (xz, yz)
E2g {11 ϵϵ ϵϵ 11 ϵϵ ϵϵ 11 ϵϵ ϵϵ 11 ϵϵ ϵϵ}   (x2-y2, xy)
Au 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 z  
Bu 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1    
E1u {11 ϵϵ ϵϵ 11 ϵϵ ϵϵ 11 ϵϵ ϵϵ 11 ϵϵ ϵϵ} (x, y)  
E2u {11 ϵϵ ϵϵ 11 ϵϵ ϵϵ 11 ϵϵ ϵϵ 11 ϵϵ ϵϵ}    

Pyramidal Cnv Groups

These groups are characterized by an n-fold proper rotation axis Cn and n mirror planes σv which contain Cn

C2v E C2 σ(xz) σ(yz)    
A1 1 1 1 1 z x2, y2, z2
A2 1 1 -1 -1 Rz xy
B1 1 -1 1 -1 x, Ry xz
B2 1 -1 -1 1 y, Rx yz

 

C3v E 2C3 v    
A1 1 1 1 z x2+y2, z2
A2 1 1 -1 Rz  
E 2 -1 0 (Rx, Ry), (x,y) (xz, yz) (x2-y2, xy)

 

C4v E 2C4 C2 v d    
A1 1 1 1 1 1 z x2+y2, z2
A2 1 1 1 -1 -1 Rz  
B1 1 -1 1 1 -1   x2-y2
B2 1 -1 1 -1 1   xy
E 2 0 -2 0 0 (Rx, Ry), (x,y) (xz, yz)

 

C5v E 2C5 2C52 v    
A1 1 1 1 1 z x2+y2, z2
A2 1 1 1 -1 Rz  
E1 2 2cos72 2cos144 0 (Rx, Ry), (x,y) (xz, yz)
E2 2 2cos144 2cos72 0   (x2-y2, xy)

 

C6v E 2C6 2C3 C2 v d    
A1 1 1 1 1 1 1 z x2+y2, z2
A2 1 1 1 1 -1 -1 Rz  
B1 1 -1 1 -1 1 -1    
B2 1 -1 1 -1 -1 1    
E1 2 1 -1 -2 0 0 (Rx, Ry), (x,y) (xz, yz)
E2 2 -1 -1 2 0 0   (x2-y2, xy)

 

C∞v E 2C ... ∞σv    
A1 1 1 ... 1 z x2+y2, z2
A2 1 1 ... -1 Rz  
E1 2 2cosϕ ... 0 (x,y), (Rx, Ry) (xz, yz)
E2 2 2cos2ϕ ... 0   (x2-y2, xy)
E3 2 2cos3ϕ ... 0    
... ... ... ... ...    

Dihedral Dn Groups

D2 E C2(z) C2(y) C2(x)    
A 1 1 1 1   x2, y2, z2
B1 1 1 -1 -1 z, Rz xy
B2 1 -1 1 -1 y, Ry zx
B3 1 -1 -1 1 x, Rx yz

 

D3 E 2C3 3C2    
A1 1 1 1   x2+y2, z2
A2 1 1 -1 z, Rz  
E 2 -1 0 (Rx, Ry), (x,y) (x2-y2, xy) (xz, yz)

 

D4 E 2C4 C2(C42) 2C2' 2C2"    
A1 1 1 1 1 1   x2+y2, z2
A2 1 1 1 -1 -1 z, Rz  
B1 1 -1 1 1 -1   x2-y2
B2 1 -1 1 -1 1   xy
E 2 0 -2 0 0 (Rx, Ry), (x,y) (xz, yz)

 

2C52

D5 E 2C5   5C2    
A1 1 1 1 1   x2+y2, z2
A2 1 1 1 -1 z, Rz  
E1 2 2cos72 2cos144   (Rx, Ry), (x,y) (xz, yz)
E2 2 2cos144 2cos72     (x2-y2, xy)

 

D6 E 2C6 2C3 C2 2C2' 3C2"    
A1 1 1 1 1 1 1   x2+y2, z2
A2 1 1 1 1 -1 -1 z, Rz  
B1 1 -1 1 -1 1 -1    
B2 1 -1 1 -1 -1 1    
E1 2 1 -1 -2 0 0 (Rx, Ry), (x,y) (xz, yz)
E2 2 -1 -1 2 0 0   (x2-y2, xy)

Prismatic Dnh Groups

These groups are characterized by

  1. an n-fold proper rotation axis Cn
  2. n 2-fold proper rotation axes C2 normal to Cn
  3. a mirror plane σh normal to Cn and containing the C2 axes.
D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)    
Ag 1 1 1 1 1 1 1 1   x2, y2, z2
B1g 1 1 -1 -1 1 1 -1 -1 Rz xy
B2g 1 -1 1 -1 1 -1 1 -1 Ry xz
B3g 1 -1 -1 1 1 -1 -1 1 Rx yz
Au 1 1 1 1 -1 -1 -1 -1    
B1u 1 1 -1 -1 -1 -1 1 1 z  
B2u 1 -1 1 -1 -1 1 -1 1 y  
B3u 1 -1 -1 1 -1 1 1 -1 x  

 

D3h E 2C3 3C2 σh 2S3 v    
A1' 1 1 1 1 1 1   x2+y2, z2
A2' 1 1 -1 1 1 -1 Rz  
E' 2 -1 0 2 -1 0 (x,y) (x2-y2, xy)
A1" 1 1 1 -1 -1 -1    
A2" 1 1 -1 -1 -1 1 z  
E" 2 -1 0 -2 1 0 (Rx, Ry) (xz, yz)

 

D4h E 2C4 C2 2C2' 2C2" i 2S4 σh v σd    
A1g 1 1 1 1 1 1 1 1 1 1   x2+y2, z2
A2g 1 1 1 -1 -1 1 1 1 -1 -1 Rz  
B1g 1 -1 1 1 -1 1 -1 1 1 -1   x2-y2
B2g 1 -1 1 -1 1 1 -1 1 -1 1   xy
Eg 2 0 -2 0 0 2 0 -2 0 0 (Rx, Ry) (xz, yz)
A1u 1 1 1 1 1 -1 -1 -1 -1 -1    
A2u 1 1 1 -1 -1 -1 -1 -1 1 1 z  
B1u 1 -1 1 1 -1 -1 1 -1 -1 1    
B2u 1 -1 1 -1 1 -1 1 -1 1 -1    
Eu 2 0 -2 0 0 -2 0 2 0 0 (x,y)  

 

D5h E 2C5 2C52 5C2 σh 2S5 2S53 v    
A1' 1 1 1 1 1 1 1 1   x2+y2, z2
A2' 1 1 1 -1 1 1 1 -1 Rz  
E1' 2 2cos72 2cos144 0 2 2cos72 2cos144   (x,y)  
E2' 2 2cos144 2cos72 0 2 2cos144 2cos72     (x2-y2, xy)
A1" 1 1 1 1 -1 -1 -1 -1    
A2" 1 1 1 -1 -1 -1 -1 1 z  
E1" 2 2cos72 2cos144 0 -2 2cos72 2cos144 0 (Rx, Ry) (xz, yz)
E2" 2 2cos144 2cos72 0 -2 2cos144 2cos72 0    

 

D6h E 2C6 2C3 C2 3C2' 3C2" i 2S3 2S6 σh d v    
A1g 1 1 1 1 1 1 1 1 1 1 1 1   x2+y2, z2
A2g 1 1 1 1 -1 -1 1 1 1 1 -1 -1 Rz  
B1g 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1    
B2g 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1    
E1g 2 1 -1 -2 0 0 2 1 -1 -2 0 0 (Rx, Ry) (xz, yz)
E2g 2 -1 -1 2 0 0 2 -1 -1 2 0 0   (x2-y2, xy)
A1u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1    
A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z  
B1u 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1    
B2u 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1    
E1u 2 1 -1 -2 0 0 -2 -1 1 2 0 0 (x,y)  
E2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0    

 

D∞h E 2C ... ∞σv i 2S ... ∞ C2    
Sg+ 1 1 ... 1 1 1 ... 1   x2+y2, z2
Sg- 1 1 ... -1 1 1 ... -1 Rz  
πg 2 2cosϕ ... 0 2 2cosϕ ... 0 (Rx, Ry) (xz, yz)
Dg 2 2cos2ϕ ... 0 2 2cos2ϕ ... 0   (x2-y2, xy)
... ... ... ... ...... ... ... ... ...    
Su+ 1 1 ... 1 -1 -1 ... -1 z  
Su- 1 1 ... -1 -1 -1 ... 1    
πu 2 2cosϕ ... 0 -2 2cosϕ ... 0 (x, y)  
Du 2 2cos2ϕ ... 0 -2 2cos2ϕ ... 0    
... ... ... ... ... ... ... ... ...    

Antiprismatic Dnd Groups

These groups are characterized by

  1. an n-fold proper rotation axis Cn
  2. n 2-fold proper rotation axes C2 normal to Cn
  3. n mirror planes σd which contain Cn.
D2d E 2S4 C2 2C2' d    
A1 1 1 1 1 1   x2+y2, z2
A2 1 1 1 -1 -1 Rz  
B1 1 -1 1 1 -1   x2-y2
B2 1 -1 1 -1 1 z xy
E 2 0 -2 0 0 (x, y), (Rx, Ry) (xz, yz)

 

D3d E 2C3 3C2 i 2S6 d    
A1g 1 1 1 1 1 1   x2+y2, z2
A2g 1 1 -1 1 1 -1 Rz  
Eg 2 -1 0 2 -1 0 (Rx, Ry) (x2-y2, xy),(xz, yz)
A1u 1 1 1 -1 -1 -1    
A2u 1 1 -1 -1 -1 1 z  
Eu 2 -1 0 -2 1 0 (x, y)  

 

D4d E 2S8 2C4 2S83 C2 4C2' d    
A1 1 1 1 1 1 1 1   x2+y2, z2
A2 1 1 1 1 1 -1 -1 Rz  
B1 1 -1 1 -1 1 1 -1    
B2 1 -1 1 -1 1 -1 1 z  
E1 2 2 0 2 -2 0 0 (x, y)  
E2 2 0 -2 0 2 0 0   (x2-y2, xy)
E3 2 2 0 2 -2 0 0 (Rx, Ry) (xz, yz)

 

D5d E 2C5 2C52 5C2 i 2S103 2S10 d    
A1g 1 1 1 1 1 1 1 1   x2+y2, z2
A2g 1 1 1 -1 1 1 1 -1 Rz  
E1g 2 2cos72 2cos144 0 2 2cos72 2cos144 0 (Rx, Ry) (xz, yz)
E2g 2 2cos144 2cos72 0 2 2cos144 2cos72 0   (x2-y2, xy)
A1u 1 1 1 1 -1 -1 -1 -1    
A2u 1 1 1 -1 -1 1 -1 1 z  
E1u 2 2cos72 2cos144 0 -2 2cos72 2cos144 0 (x, y)  
E2u 2 2cos144 2cos72 0 -2 2cos144 2cos72 0    

 

D6d E 2S12 2C6 2S4 2C3 2S125 C2 6C2' d    
A1 1 1 1 1 1 1 1 1 1   x2+y2, z2
A2 1 1 1 1 1 1 1 -1 -1 Rz  
B1 1 -1 1 -1 1 -1 1 1 -1    
B2 1 -1 1 -1 1 -1 1 -1 1 z  
E1 2 3 1 0 -1 3 -2 0 0 (x, y)  
E2 2 1 -1 -2 -1 1 2 0 0   (x2-y2, xy)
E3 2 0 -2 0 2 0 -2 0 0    
E4 2 -1 -1 2 -1 -1 2 0 0    
E5 2 3 1 0 -1 3 -2 0 0 (Rx, Ry) (xz, yz)

Improper Rotation Sn Groups

These groups are characterized by an n-fold improper rotation axis Sn, where n is necessarily even

S4 E S4 C2 S43    
A 1 1 1 1 Rz x2+y2, z2
B 1 -1 1 -1 z x2-y2, xy
E {11 ii 11 ii} (x, y); (Rx, Ry) (xz, yz)

 

S6 E C3 C32 i S65 S6    
Ag 1 1 1 1 1 1 Rz x2+y2, z2
Eg {11 ϵϵ ϵϵ 11 ϵϵ ϵϵ} (Rx, Ry) (x2-y2, xy), (xz, yz)
Au 1 1 1 -1 -1 -1 z  
Eu {11 ϵϵ ϵϵ 11 ϵϵ ϵϵ} (x, y)  

 

S8 E S8 C4 S83 C2 S85 C43 S87   ε=exp(i2π/8)
A 1 1 1 1 1 1 1 1 Rz x2+y2, z2
B 1 -1 1 -1 1 -1 1 -1 z  
E1 {11 ϵϵ ii ϵϵ 11 ϵϵ ii ϵϵ} (Rx, Ry), (x, y)  
E2 {11 ii 11 ii 11 ii 11 ii}   (x2-y2, xy)
E3 {11 ϵϵ ii ϵϵ 11 ϵϵ ii ϵϵ}   (xz, yz)

Cubic Groups

These polyhedral groups are characterized by not having a C5 proper rotation axis.

T E 4C3 4C32 3C2    
A 1 1 1 1   x2+y2+z2
E {11 ϵϵ ϵϵ 11}   (2z2-x2-y2, x2-y2)
T 3 0 0   (Rx, Ry, Rz), (x, y, z) (xz, yz, xy)

 

Th E 4C3 4C32 3C2 i 4S6 4S65 h   ε=exp(i2π/3)
Ag 1 1 1 1 1 1 1 1   x2+y2+z2
Eg {11 ϵϵ ϵϵ 11 11 ϵϵ ϵϵ 11}   (2z2-x2-y2, x2-y2)
Tg 3 0 0 -1 1 0 0 -1 (Rx, Ry, Rz) (xz, yz, xy)
Au 1 1 1 1 -1 -1 -1 -1    
Eu {11 ϵϵ ϵϵ 11 11 ϵϵ ϵϵ 11}    
Tu 3 0 0 -1 -1 0 0 1 (x, y, z)  

 

Td E 8C3 3C2 6S4 d    
A1 1 1 1 1 1   x2+y2+z2
A2 1 1 1 -1 -1    
E 2 -1 2 0 0   (2z2-x2-y2, x2-y2)
T1 3 0 -1 1 -1 (Rx, Ry, Rz)  
T2 3 0 -1 -1 1 (x, y, z) (xz, yz, xy)

 

O E 8C3 3C2 6C4 6C2    
A1 1 1 1 1 1   x2+y2+z2
A2 1 1 1 -1 -1    
E 2 -1 2 0 0   (2z2-x2-y2, x2-y2)
T1 3 0 -1 1 -1 (Rx, Ry, Rz), (x, y, z)  
T2 3 0 -1 -1 1   (xz, yz, xy)

 

Oh E 8C2 6C2 6C4 3C2(C42) i 6S4 8S6 h d    
A1g 1 1 1 1 1 1 1 1 1 1   x2+y2+z2
A2g 1 1 -1 -1 1 1 -1 1 1 -1    
Eg 2 -1 0 0 2 2 0 -1 2 0   (2z2-x2-y2, x2-y2)
T1g 3 0 -1 1 -1 3 1 0 -1 -1 (Rx, Ry, Rz)  
T2g 3 0 1 -1 -1 3 -1 0 -1 1   (xz, yz, xy)
A1u 1 1 1 1 1 -1 -1 -1 -1 -1    
A2u 1 1 -1 -1 1 -1 1 -1 -1 1    
Eu 2 -1 0 0 2 -2 0 1 -2 0    
T1u 3 0 -1 1 -1 -3 -1 0 1 1 (x, y, z)  
T2u 3 0 1 -1 -1 -3 1 0 1 -1    

Character Tables is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?