Character Tables (Inorganic)
( \newcommand{\kernel}{\mathrm{null}\,}\)
UNDER CONSTRUCTION
Low-symmetry groups (C1,Cs,Ci)
C1 Eh=1A11
CsEσhh=2A11x,y,Rzx2,y2,z2,xyA′1−1z,Rx,Ryyz,xz
C1Eih=3Ag11Rx,Ry,Rzx2,y2,z2,xy,xz,yzAu1−1x,y,z
The groups Cn
C2EC2h=2A11z,Rzx2,y2,z2,xyB1−1x,y,Rx,Ryyz,xz
C3EC3C23h=3A111x,Rzx2+y2,z2E{1εε∗1ε∗ε}(x,y),(Rx,Ry)(x2−y2,xy),(xz,yz)
ε=e(2πi)/3
C4EC4C2C34h=4A1111z,Rzx2+y2,z2B1−11−1x2−y2,xyE{1i−1−i1−i−1i}(x,y),(Rx,Ry)(yz,xz)
The groups Cnv
C2vEC2σv(xz)σ′v(yz)h=4A11111zx2,y2,z2A211−1−1RzxyB11−11−1x,RyxzB21−1−11y,Rxyz
C3vE2C33σvA1111zx2+y2,z2A211−1RzE2−10x,y,Rx,Ryx2−y2,xy,xz,yz
The groups Cnh
C2hEC2iσhAg1111Rzx2,y2,z2,xyBg1−11−1Rx,Ryxz,yzAu11−1−1zBu1−1−11x,y
C3hEC3C23σhS3S53c=e2π/3A111111Rzx2+y2,z2E{1cc∗1cc∗1c∗c1c∗c}x,yx2−y2,xyA′111−1−1−1zE′{1cc∗−1−c−c∗1c∗c−1−c∗−c}Rx,Ryxz,yz
The groups Dn
D2EC2(z)C2(y)C2(x)A1111x2,y2,z2B111−1−1z,RzxyB21−11−1y,RyxzB31−1−11x,Rxyz
D3E2C33C2A1111x2+y2,z2A211−1z,RzE2−10x,y,Rx,Ryx2−y2,xy,xz,yz
The groups Dnd
D2dE2S4C22C′22σdA111111x2+y2,z2A2111−1−1RzB11−111−1x2−y2B21−11−11zxyE20−200(x,y),(Rx,Ry)(xz,yz)
D3dE2C33C2i2S63σdA1g111111x2+y2,z2A2g11−111−1RzEg2−102−10Rx,Ryx2−y2,xy,xz,yzA1u111−1−1−1A2u11−1−1−11zEu2−10−210x,y
The Groups Dnh
D2hEC2(z)C2(y)C2(x)iσ(xy)σ(xz)σ(yz)h=8Ag11111111x2,y2,z2B1g11−1−111−1−1RzxyB2g1−11−11−11−1RyzxB3g1−1−111−1−11RxyzAu1111−1−1−1−1B1u11−1−1−1−111zB2u1−11−1−11−11yB3u1−1−11−111−1x
\begin{array}{|c|rrrrrr|cc|} \hline \bf{D_{3h}} & E & 2C_3 & 3C_2 &\sigma_h & 2S_3 & 3\sigma_v & h=8 & \\ \hline A_{1}' & 1 & 1 & 1 & 1 & 1 & 1 & & x^2+y^2, \; z^2\\ A_{2}' & 1 & 1 & -1 & 1 & 1 & -1 & R_z & \\ E' & 2 & -1 & 0 & 2 & -1 & 0 & (x,\;y) & (x^2-y^2,\; xy) \\ A_{1}" & 1 & 1 & 1 & -1 & -1 & -1 & & \\ A_{2}" & 1 & 1 & -1 & -1 & -1 & 1 & R_z & \\ E" & 2 & -1 & 0 & -2 & 1 & 0 & (R_x,\;R_y) & (xz,\; yz) \\ \hline \end{array}
\begin{array}{|c|rrrrrrrrrr|cc|} \hline \bf{D_{4h}} & E & 2C_4 & C_2 & 2C_2' & 2C_2" & i & 2S_4 & \sigma_h & 2\sigma_v & 2\sigma_d & h=16 & \\ \hline A_{1g} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & x^2+y^2, \; z^2\\ A_{2g} & 1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & R_z & \\ B_{1g} & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & & x^2-y^2 \\ B_{2g} & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & & xy \\ E_{g} & 2 & 0 & -2 & 0 & 0 & 2 & 0 & -2 & 0 & 0 & (R_x,\;R_y) & (xz,\; yz) \\ A_{1u} & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & & \\ A_{2u} & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & z & \\ B_{1u} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & & \\ B_{2u} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & & \\ E_{u} & 2 & 0 & -2 & 0 & 0 & -2 & 0 & 2 & 0 & 0 & & (x, \; y)\\ \hline \end{array}
\begin{array}{|c|rrrrrrrr|cc|} \hline \bf{D_{5h}} & E & 2C_5 & 2C_5^2 & 5C_2 & \sigma _h & 2S_5 & 2S_5^2 & 5 \sigma_h & h=20 & \\ \hline A_{1}’ & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & x^2+y^2, \; z^2\\A_{2}’ & 1 & 1 & 1 & -1 & 1 & 1 & 1 & -1 & R_z & \\ E_{1}’ & 2 & 2cos(72 ^{\circ}) & 2cos(144 ^{\circ}) & 0 & 2 & 2cos(72 ^{\circ}) & 2cos(144 ^{\circ}) & 0 & (x, \; y) & \\ E_{2}’ & 2 & 2cos(144 ^{\circ}) & 2cos(72 ^{\circ}) & 0 & 2 & 2cos(144 ^{\circ}) & 2cos(72 ^{\circ}) & 0 & & (x^2-y^2,\; xy) \\ A_{1}” & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & & \\ A_{2}” & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & z & \\ E_{1}” & 2 & 2cos(72 ^{\circ}) & 2cos(144 ^{\circ}) & 0 & -2 & -2cos(72 ^{\circ}) & -2cos(144 ^{\circ}) & 0 & (R_x,\;R_y) & (xz,\; yz) \\ E_{2}” & 2 & 2cos(144 ^{\circ}) & 2cos(72 ^{\circ}) & 0 & -2 & -2cos(144 ^{\circ}) & -2cos(72 ^{\circ}) & 0 & & \\ \hline \end{array}
High-symmetry groups
\begin{array}{|c|cccccccc|c|c|} \hline \bf{D_{\infty h}} & \mathrm{E} & 2 \mathrm{C}_{\infty}^{\phi} & ... & \infty \sigma_v & i & 2S_{\infty}^{\phi} & ... & \infty C_2 & & \\ \hline {A}_{1g} & 1 & 1 & ... & 1 & 1 & 1 & ...& 1 & & x^{2}+y^{2}, \, z^{2} \\ {A}_{2g} & 1 & 1 & ... & -1 & 1 & 1 & ...& -1 & R_z & \\ {E}_{1g} & 2 & 2\cos \phi & ... & 0 & 2 & -2\cos\phi & ...& 0 & (R_z, \, R_y) & (xz, \, yz) \\ {E}_{2g} & 2 & 2\cos 2\phi & ... & 0 & 2 & 2\cos2\phi & ...& 0 & & (x^{2}-y^{2}, \, xy) \\ ... & ... & ... & ... & ... & ... & ... & ...& ... & & \\ {A}_{1u} & 1 & 1 & ... & 1 & -1 & -1 & ...& -1 & z & \\ {A}_{2u} & 1 & 1 & ... & -1 & -1 & -1 & ...& 1 & & \\ {E}_{1u} & 2 & 2\cos \phi & ... & 0 & -2 & 2\cos\phi & ...& 0 & (x, \, y) & \\ {E}_{2u} & 2 & 2\cos 2\phi & ... & 0 & -2 & -2\cos2\phi & ...& 0 & & \\ ... & ... & ... & ... & ... & ... & ... & ...& ... & & \\ \hline \end{array}
C_{\infty v} and D_{\infty h}
\begin{array}{l|cccccccc|l|l} D_{\infty h} & E & 2C_\infty^\Phi & \ldots & \infty \sigma_v & i & 2S_\infty^\Phi & \ldots & \infty C_2 & & \\ \hline \Sigma_g^+ & 1 & 1 & \ldots & 1 & 1 & 1 & \ldots & 1 & & x^2 + y^2, z^2 \\ \Sigma_g^- & 1 & 1 & \ldots & -1 & 1 & 1 & \ldots & -1 & R_z & \\ \Pi_g & 2 & 2cos \Phi & \ldots & 0 & 2 & -2cos \Phi & \ldots & 0 & R_x, R_y & xz, yz \\ \Delta_g & 2 & 2cos 2\Phi & \ldots & 0 & 2 & 2cos 2\Phi & \ldots & 0 & & x^2 - y^2, xy \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \\ \Sigma_u^+ & 1 & 1 & \ldots & 1 & -1 & -1 & \ldots & -1 & z & \\ \Sigma_u^- & 1 & 1 & \ldots & -1 & -1 & -1 & \ldots & 1 & & \\ \Pi_u & 2 & 2cos \Phi & \ldots & 0 & -2 & 2cos \Phi & \ldots & 0 & x, y & \\ \Delta_u & 2 & 2cos 2\Phi & \ldots & 0 & -2 & -2cos 2\Phi & \ldots & 0 & & \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \end{array} \label{30.16}
S_n groups
\begin{array}{l|c|l|l} S_4 & E \: \: \: \: \: S_4 \: \: \: \: \: C_2 \: \: \: \: \: S_4^3 & & \\ \hline A & 1 \: \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: \: 1 & R_z & x^2 + y^2, z^2 \\ B & 1 \: \: \: \: -1 \: \: \: \: \: \: \: \: 1 \: \: \: \: -1 & z & x^2 - y^2, xy \\ E & \begin{Bmatrix} 1 & i & -1 & -i \\ 1 & -i & -1 & i \end{Bmatrix} & x, y, R_x, R_y & xz, yz \end{array} \label{30.17}
\begin{array}{l|c|l|l} S_6 & E \: \: \: \: \: C_3 \: \: \: \: \: C_3^2 \: \: \: \: \: i \: \: \: \: \: S_6^5 \: \: \: \: \: S_6 & & c=e^{2\pi/3} \\ \hline A_g & 1 \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: 1 & R_z & x^2 + y^2, z^2 \\ E_g & \begin{Bmatrix} 1 & \: \: c & \: \: c^* & \: \: 1 & \: \: c & \: \: c^* \\ 1 \: \: & \: \: c^* & \: \: c & \: \: 1 & \: \: c^* & \: \: c \end{Bmatrix} & R_x, R_y & x^2 - y^2, xy, xz, yz \\ A_u & 1 \: \: \: \: \: \: 1 \: \: \: \: \: \: 1 \: \: \: \: -1 \: \: \: \: -1 \: \: \: \: \: -1 & z & \\ E_u & \begin{Bmatrix} 1 & c & c^* & -1 & -c & -c^* \\ 1 & c^* & c & -1 & -c^* & -c \end{Bmatrix} & x, y & \end{array} \label{30.18}
Cubic groups
\begin{array}{l|c|l|l} T & E \: \: \: 4C_3 \: \: \: 4C_3^2 \: \: \: 3C_2 & & c=e^{2\pi/3} \\ \hline A & 1 \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: 1 & & x^2 + y^2, z^2 \\ E & \begin{Bmatrix} 1 & c & c^* & 1 \\ 1 & c* & c & 1 \end{Bmatrix} & & 2z^2 - x^2 - y^2, x^2 - y^2 \\ T & 3 \: \: \: \: \: 0 \: \: \: \: \: \: \: 0 \: \: \: -1 & R_x, R_y, R_z, x, y, z & xy, xz, yz \end{array} \label{30.19}
\begin{array}{l|ccccc|l|l} T_d & E & 8C_3 & 3C_2 & 6S_4 & 6\sigma_d & & \\ \hline A_1 & 1 & 1 & 1 & 1 & 1 & & x^2 + y^2, z^2 \\ A_2 & 1 & 1 & 1 & -1 & -1 & & \\ E & 2 & -1 & 2 & 0 & 0 & & 2z^2 - x^-2 - y^2, x^2 - y^2 \\ T_1 & 3 & 0 & -1 & 1 & -1 & R_x, R_y, R_z & \\ T_2 & 3 & 0 & -1 & -1 & 1 & x, y, z & xy, xz, yz \end{array} \label{30.20}
Contributors and Attributions
Claire Vallance (University of Oxford)
Curated or created by Kathryn Haas