Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Character Tables (Inorganic)

( \newcommand{\kernel}{\mathrm{null}\,}\)

UNDER CONSTRUCTION

Low-symmetry groups (C1,Cs,Ci)

C1 Eh=1A11

CsEσhh=2A11x,y,Rzx2,y2,z2,xyA11z,Rx,Ryyz,xz

C1Eih=3Ag11Rx,Ry,Rzx2,y2,z2,xy,xz,yzAu11x,y,z


The groups Cn

C2EC2h=2A11z,Rzx2,y2,z2,xyB11x,y,Rx,Ryyz,xz

C3EC3C23h=3A111x,Rzx2+y2,z2E{1εε1εε}(x,y),(Rx,Ry)(x2y2,xy),(xz,yz)
ε=e(2πi)/3

C4EC4C2C34h=4A1111z,Rzx2+y2,z2B1111x2y2,xyE{1i1i1i1i}(x,y),(Rx,Ry)(yz,xz)


The groups Cnv

C2vEC2σv(xz)σv(yz)h=4A11111zx2,y2,z2A21111RzxyB11111x,RyxzB21111y,Rxyz

C3vE2C33σvA1111zx2+y2,z2A2111RzE210x,y,Rx,Ryx2y2,xy,xz,yz


The groups Cnh

C2hEC2iσhAg1111Rzx2,y2,z2,xyBg1111Rx,Ryxz,yzAu1111zBu1111x,y

C3hEC3C23σhS3S53c=e2π/3A111111Rzx2+y2,z2E{1cc1cc1cc1cc}x,yx2y2,xyA111111zE{1cc1cc1cc1cc}Rx,Ryxz,yz


The groups Dn

D2EC2(z)C2(y)C2(x)A1111x2,y2,z2B11111z,RzxyB21111y,RyxzB31111x,Rxyz

D3E2C33C2A1111x2+y2,z2A2111z,RzE210x,y,Rx,Ryx2y2,xy,xz,yz


The groups Dnd

D2dE2S4C22C22σdA111111x2+y2,z2A211111RzB111111x2y2B211111zxyE20200(x,y),(Rx,Ry)(xz,yz)

D3dE2C33C2i2S63σdA1g111111x2+y2,z2A2g111111RzEg210210Rx,Ryx2y2,xy,xz,yzA1u111111A2u111111zEu210210x,y


The Groups Dnh

D2hEC2(z)C2(y)C2(x)iσ(xy)σ(xz)σ(yz)h=8Ag11111111x2,y2,z2B1g11111111RzxyB2g11111111RyzxB3g11111111RxyzAu11111111B1u11111111zB2u11111111yB3u11111111x

\begin{array}{|c|rrrrrr|cc|} \hline \bf{D_{3h}} & E & 2C_3 & 3C_2 &\sigma_h & 2S_3 & 3\sigma_v & h=8 & \\ \hline A_{1}' & 1 & 1 & 1 & 1 & 1 & 1 & & x^2+y^2, \; z^2\\ A_{2}' & 1 & 1 & -1 & 1 & 1 & -1 & R_z & \\ E' & 2 & -1 & 0 & 2 & -1 & 0 & (x,\;y) & (x^2-y^2,\; xy) \\ A_{1}" & 1 & 1 & 1 & -1 & -1 & -1 & & \\ A_{2}" & 1 & 1 & -1 & -1 & -1 & 1 & R_z & \\ E" & 2 & -1 & 0 & -2 & 1 & 0 & (R_x,\;R_y) & (xz,\; yz) \\ \hline \end{array}

\begin{array}{|c|rrrrrrrrrr|cc|} \hline \bf{D_{4h}} & E & 2C_4 & C_2 & 2C_2' & 2C_2" & i & 2S_4 & \sigma_h & 2\sigma_v & 2\sigma_d & h=16 & \\ \hline A_{1g} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & x^2+y^2, \; z^2\\ A_{2g} & 1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & R_z & \\ B_{1g} & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & & x^2-y^2 \\ B_{2g} & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & & xy \\ E_{g} & 2 & 0 & -2 & 0 & 0 & 2 & 0 & -2 & 0 & 0 & (R_x,\;R_y) & (xz,\; yz) \\ A_{1u} & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & & \\ A_{2u} & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & z & \\ B_{1u} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & & \\ B_{2u} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & & \\ E_{u} & 2 & 0 & -2 & 0 & 0 & -2 & 0 & 2 & 0 & 0 & & (x, \; y)\\ \hline \end{array}

\begin{array}{|c|rrrrrrrr|cc|} \hline \bf{D_{5h}} & E & 2C_5 & 2C_5^2 & 5C_2 & \sigma _h & 2S_5 & 2S_5^2 & 5 \sigma_h  & h=20 & \\ \hline A_{1}’ & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1  & & x^2+y^2, \; z^2\\A_{2}’ & 1 & 1 & 1 & -1 & 1 & 1 & 1 & -1  & R_z & \\ E_{1}’ & 2 & 2cos(72 ^{\circ}) & 2cos(144 ^{\circ}) & 0 & 2 & 2cos(72 ^{\circ}) & 2cos(144 ^{\circ}) & 0  & (x, \; y) &  \\ E_{2}’ & 2 & 2cos(144 ^{\circ}) & 2cos(72 ^{\circ}) & 0 & 2 & 2cos(144 ^{\circ}) & 2cos(72 ^{\circ}) & 0  &  & (x^2-y^2,\; xy) \\ A_{1}” & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1  & & \\ A_{2}” & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1  & z & \\ E_{1}” & 2 & 2cos(72 ^{\circ}) & 2cos(144 ^{\circ}) & 0 & -2 & -2cos(72 ^{\circ}) & -2cos(144 ^{\circ}) & 0  & (R_x,\;R_y) & (xz,\; yz) \\ E_{2}” & 2 & 2cos(144 ^{\circ}) & 2cos(72 ^{\circ}) & 0 & -2 & -2cos(144 ^{\circ}) & -2cos(72 ^{\circ}) & 0  & & \\ \hline \end{array}


High-symmetry groups

\begin{array}{|c|cccccccc|c|c|} \hline \bf{D_{\infty h}} & \mathrm{E} & 2 \mathrm{C}_{\infty}^{\phi} & ... & \infty \sigma_v & i & 2S_{\infty}^{\phi} & ... & \infty C_2 & & \\ \hline {A}_{1g} & 1 & 1 & ... & 1 & 1 & 1 & ...& 1 & & x^{2}+y^{2}, \, z^{2} \\ {A}_{2g} & 1 & 1 & ... & -1 & 1 & 1 & ...& -1 & R_z & \\ {E}_{1g} & 2 & 2\cos \phi & ... & 0 & 2 & -2\cos\phi & ...& 0 & (R_z, \, R_y) & (xz, \, yz) \\ {E}_{2g} & 2 & 2\cos 2\phi & ... & 0 & 2 & 2\cos2\phi & ...& 0 & & (x^{2}-y^{2}, \, xy) \\ ... & ... & ... & ... & ... & ... & ... & ...& ... & & \\ {A}_{1u} & 1 & 1 & ... & 1 & -1 & -1 & ...& -1 & z & \\ {A}_{2u} & 1 & 1 & ... & -1 & -1 & -1 & ...& 1 & & \\ {E}_{1u} & 2 & 2\cos \phi & ... & 0 & -2 & 2\cos\phi & ...& 0 & (x, \, y) & \\ {E}_{2u} & 2 & 2\cos 2\phi & ... & 0 & -2 & -2\cos2\phi & ...& 0 & & \\ ... & ... & ... & ... & ... & ... & ... & ...& ... & & \\ \hline \end{array}

C_{\infty v} and D_{\infty h}

\begin{array}{l|cccccccc|l|l} D_{\infty h} & E & 2C_\infty^\Phi & \ldots & \infty \sigma_v & i & 2S_\infty^\Phi & \ldots & \infty C_2 & & \\ \hline \Sigma_g^+ & 1 & 1 & \ldots & 1 & 1 & 1 & \ldots & 1 & & x^2 + y^2, z^2 \\ \Sigma_g^- & 1 & 1 & \ldots & -1 & 1 & 1 & \ldots & -1 & R_z & \\ \Pi_g & 2 & 2cos \Phi & \ldots & 0 & 2 & -2cos \Phi & \ldots & 0 & R_x, R_y & xz, yz \\ \Delta_g & 2 & 2cos 2\Phi & \ldots & 0 & 2 & 2cos 2\Phi & \ldots & 0 & & x^2 - y^2, xy \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \\ \Sigma_u^+ & 1 & 1 & \ldots & 1 & -1 & -1 & \ldots & -1 & z & \\ \Sigma_u^- & 1 & 1 & \ldots & -1 & -1 & -1 & \ldots & 1 & & \\ \Pi_u & 2 & 2cos \Phi & \ldots & 0 & -2 & 2cos \Phi & \ldots & 0 & x, y & \\ \Delta_u & 2 & 2cos 2\Phi & \ldots & 0 & -2 & -2cos 2\Phi & \ldots & 0 & & \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & & \end{array} \label{30.16}

S_n groups

\begin{array}{l|c|l|l} S_4 & E \: \: \: \: \: S_4 \: \: \: \: \: C_2 \: \: \: \: \: S_4^3 & & \\ \hline A & 1 \: \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: \: 1 & R_z & x^2 + y^2, z^2 \\ B & 1 \: \: \: \: -1 \: \: \: \: \: \: \: \: 1 \: \: \: \: -1 & z & x^2 - y^2, xy \\ E & \begin{Bmatrix} 1 & i & -1 & -i \\ 1 & -i & -1 & i \end{Bmatrix} & x, y, R_x, R_y & xz, yz \end{array} \label{30.17}

\begin{array}{l|c|l|l} S_6 & E \: \: \: \: \: C_3 \: \: \: \: \: C_3^2 \: \: \: \: \: i \: \: \: \: \: S_6^5 \: \: \: \: \: S_6 & & c=e^{2\pi/3} \\ \hline A_g & 1 \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: \: 1 & R_z & x^2 + y^2, z^2 \\ E_g & \begin{Bmatrix} 1 & \: \: c & \: \: c^* & \: \: 1 & \: \: c & \: \: c^* \\ 1 \: \: & \: \: c^* & \: \: c & \: \: 1 & \: \: c^* & \: \: c \end{Bmatrix} & R_x, R_y & x^2 - y^2, xy, xz, yz \\ A_u & 1 \: \: \: \: \: \: 1 \: \: \: \: \: \: 1 \: \: \: \: -1 \: \: \: \: -1 \: \: \: \: \: -1 & z & \\ E_u & \begin{Bmatrix} 1 & c & c^* & -1 & -c & -c^* \\ 1 & c^* & c & -1 & -c^* & -c \end{Bmatrix} & x, y & \end{array} \label{30.18}

Cubic groups

\begin{array}{l|c|l|l} T & E \: \: \: 4C_3 \: \: \: 4C_3^2 \: \: \: 3C_2 & & c=e^{2\pi/3} \\ \hline A & 1 \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \: 1 & & x^2 + y^2, z^2 \\ E & \begin{Bmatrix} 1 & c & c^* & 1 \\ 1 & c* & c & 1 \end{Bmatrix} & & 2z^2 - x^2 - y^2, x^2 - y^2 \\ T & 3 \: \: \: \: \: 0 \: \: \: \: \: \: \: 0 \: \: \: -1 & R_x, R_y, R_z, x, y, z & xy, xz, yz \end{array} \label{30.19}

\begin{array}{l|ccccc|l|l} T_d & E & 8C_3 & 3C_2 & 6S_4 & 6\sigma_d & & \\ \hline A_1 & 1 & 1 & 1 & 1 & 1 & & x^2 + y^2, z^2 \\ A_2 & 1 & 1 & 1 & -1 & -1 & & \\ E & 2 & -1 & 2 & 0 & 0 & & 2z^2 - x^-2 - y^2, x^2 - y^2 \\ T_1 & 3 & 0 & -1 & 1 & -1 & R_x, R_y, R_z & \\ T_2 & 3 & 0 & -1 & -1 & 1 & x, y, z & xy, xz, yz \end{array} \label{30.20}

Contributors and Attributions

Claire Vallance (University of Oxford)

Curated or created by Kathryn Haas


Character Tables (Inorganic) is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?