Skip to main content
Chemistry LibreTexts

11.1: Introduction

  • Page ID
    500483
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Objectives

    After completing this section, you should be able to

    1. identify carbohydrates (sugars) as being polyhydroxylated aldehydes and ketones.
    2. describe, briefly, the process of photosynthesis, and identify the role played by carbohydrates as an energy source for living organisms.
    Key Terms

    Make certain that you can define, and use in context, the key term below.

    • carbohydrate

    We’ve now seen all the common functional groups and reaction types that occur in organic and biological chemistry. In this and the next four chapters, we’ll focus on the major classes of biological molecules, beginning with a look at the structures and primary biological functions of carbohydrates. 

    Bee nestled within a beehive, situated on a vibrant honeycomb structure.
    Figure \(\PageIndex{1}\): Produced by honeybees from the nectar of flowers, honey is primarily a mixture of the two simple sugars fructose and glucose. (credit: modification of work “Apis mellifera” by Thomas Bresson/Flickr, CC BY 2.0)

    Carbohydrates occur in every living organism. The sugar and starch in food, and the cellulose in wood, paper, and cotton are nearly pure carbohydrates. Modified carbohydrates form part of the coating around living cells, other carbohydrates are part of the nucleic acids that carry our genetic information, and still others are used as medicines.

    The word carbohydrate derives historically from the fact that glucose, the first simple carbohydrate to be obtained in pure form, has the molecular formula C6H12O6 and was originally thought to be a “hydrate of carbon, C6(H2O)6.” This view was soon abandoned, but the name persisted. Today, the term carbohydrate is used to refer loosely to the broad class of polyhydroxylated aldehydes and ketones commonly called sugars. Glucose, also known as dextrose in medical work, is the most familiar example.

    Two representations of the structures of glucose (dextrose) which is a pentahydroxyhexanal. The wedge-dash structure and Fischer projection of glucose.

    Carbohydrates are synthesized by green plants during photosynthesis, a complex process in which sunlight provides the energy to convert CO2 and H2O into glucose plus oxygen. Many molecules of glucose are then chemically linked for storage by the plant in the form of either cellulose or starch. It has been estimated that more than 50% of the dry weight of the earth’s biomass—all plants and animals—consists of glucose polymers. When eaten and metabolized, carbohydrates then provide animals with a source of readily available energy. Thus, carbohydrates act as the chemical intermediaries by which solar energy is stored and used to support life.

    Glucose is produced in plants along with oxygen through photosynthesis from carbon dioxide and water in the presence of sunlight. Glucose is converted to other products named cellulose and starch.

    Because humans and most other mammals lack the enzymes needed for the digestion of cellulose, they require starch as their dietary source of carbohydrates. Grazing animals such as cows, however, have microorganisms in their first stomach that are able to digest cellulose. The energy stored in cellulose is thus moved up the biological food chain when these ruminant animals eat grass and are themselves used for food.

    Introduction

    All carbohydrates consist of carbon, hydrogen, and oxygen atoms and are polyhydroxy aldehydes or ketones or are compounds that can be broken down to form such compounds. Examples of carbohydrates include starch, fiber, the sweet-tasting compounds called sugars, and structural materials such as cellulose. The term carbohydrate had its origin in a misinterpretation of the molecular formulas of many of these substances. For example, because its formula is C6H12O6, glucose was once thought to be a “carbon hydrate” with the structure C6·6H2O.

    glucose.jpg
    Example 1

    Which compounds would be classified as carbohydrates?

    a.Ex 1 1.jpg  b. Ex 1 2.jpg

    c. Ex 1 3.jpg   d. Ex 1 4.jpg

    Solution
    1. This is a carbohydrate because the molecule contains an aldehyde functional group with OH groups on the other two carbon atoms.
    2. This is not a carbohydrate because the molecule does not contain an aldehyde or a ketone functional group.
    3. This is a carbohydrate because the molecule contains a ketone functional group with OH groups on the other two carbon atoms.
    4. This is not a carbohydrate; although it has a ketone functional group, one of the other carbons atoms does not have an OH group attached.
    Exercise 1

    Which compounds would be classified as carbohydrates?

    1. SB 1.jpg
    2. SB 2.jpg
    3. SB 3.jpg
    4. SB 4.jpg

    Contributors and Attributions

    • The Basics of General, Organic, and Biological Chemistry by David W. Ball, John W. Hill, and Rhonda J. Scott.

    This page titled 11.1: Introduction is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Sol Parajon Puenzo (Cañada College) .