Skip to main content
Chemistry LibreTexts

17.13.0: Chapter 1

  • Page ID
    444603
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1.

    Place a glass of water outside. It will freeze if the temperature is below 0 °C.

    3.

    (a) law (states a consistently observed phenomenon, can be used for prediction); (b) theory (a widely accepted explanation of the behavior of matter); (c) hypothesis (a tentative explanation, can be investigated by experimentation)

    5.

    (a) symbolic, microscopic; (b) macroscopic; (c) symbolic, macroscopic; (d) microscopic

    7.

    Macroscopic. The heat required is determined from macroscopic properties.

    9.

    Liquids can change their shape (flow); solids can’t. Gases can undergo large volume changes as pressure changes; liquids do not. Gases flow and change volume; solids do not.

    11.

    The mixture can have a variety of compositions; a pure substance has a definite composition. Both have the same composition from point to point.

    13.

    Molecules of elements contain only one type of atom; molecules of compounds contain two or more types of atoms. They are similar in that both are comprised of two or more atoms chemically bonded together.

    15.

    Answers will vary. Sample answer: Gatorade contains water, sugar, dextrose, citric acid, salt, sodium chloride, monopotassium phosphate, and sucrose acetate isobutyrate.

    17.

    (a) element; (b) element; (c) compound; (d) mixture; (e) compound; (f) compound; (g) compound; (h) mixture

    19.

    In each case, a molecule consists of two or more combined atoms. They differ in that the types of atoms change from one substance to the next.

    21.

    Gasoline (a mixture of compounds), oxygen, and to a lesser extent, nitrogen are consumed. Carbon dioxide and water are the principal products. Carbon monoxide and nitrogen oxides are produced in lesser amounts.

    23.

    (a) Increased as it would have combined with oxygen in the air thus increasing the amount of matter and therefore the mass. (b) 0.9 g

    25.

    (a) 200.0 g; (b) The mass of the container and contents would decrease as carbon dioxide is a gaseous product and would leave the container. (c) 102.3 g

    27.

    (a) physical; (b) chemical; (c) chemical; (d) physical; (e) physical

    29.

    physical

    31.

    The value of an extensive property depends upon the amount of matter being considered, whereas the value of an intensive property is the same regardless of the amount of matter being considered.

    33.

    Being extensive properties, both mass and volume are directly proportional to the amount of substance under study. Dividing one extensive property by another will in effect “cancel” this dependence on amount, yielding a ratio that is independent of amount (an intensive property).

    35.

    about a yard

    37.

    (a) kilograms; (b) meters; (c) meters/second; (d) kilograms/cubic meter; (e) kelvin; (f) square meters; (g) cubic meters

    39.

    (a) centi-, ×× 10−2; (b) deci-, ×× 10−1; (c) Giga-, ×× 109; (d) kilo-, ×× 103; (e) milli-, ×× 10−3; (f) nano-, ×× 10−9; (g) pico-, ×× 10−12; (h) tera-, ×× 1012

    41.

    (a) m = 18.58 g, V = 5.7 mL. (b) d = 3.3 g/mL (c) dioptase (copper cyclosilicate, d = 3.28—3.31 g/mL); malachite (basic copper carbonate, d = 3.25—4.10 g/mL); Paraiba tourmaline (sodium lithium boron silicate with copper, d = 2.82—3.32 g/mL)

    43.

    (a) displaced water volume = 2.8 mL; (b) displaced water mass = 2.8 g; (c) The block mass is 2.76 g, essentially equal to the mass of displaced water (2.8 g) and consistent with Archimedes’ principle of buoyancy.

    45.

    (a) 7.04 ×× 102; (b) 3.344 ×× 10−2; (c) 5.479 ×× 102; (d) 2.2086 ×× 104; (e) 1.00000 ×× 103; (f) 6.51 ×× 10−8; (g) 7.157 ×× 10−3

    47.

    (a) exact; (b) exact; (c) uncertain; (d) exact; (e) uncertain; (f) uncertain

    49.

    (a) two; (b) three; (c) five; (d) four; (e) six; (f) two; (g) five

    51.

    (a) 0.44; (b) 9.0; (c) 27; (d) 140; (e) 1.5 ×× 10−3; (f) 0.44

    53.

    (a) 2.15 ×× 105; (b) 4.2 ×× 106; (c) 2.08; (d) 0.19; (e) 27,440; (f) 43.0

    55.

    (a) Archer X; (b) Archer W; (c) Archer Y

    57.

    (a) 1.0936 yd1 m1.0936 yd1 m; (b) 0.94635 L1 qt0.94635 L1 qt; (c) 2.2046 lb1 kg2.2046 lb1 kg

    59.

    2.0 L67.6 fl oz=0.030 L1 fl oz2.0 L67.6 fl oz=0.030 L1 fl oz
    Only two significant figures are justified.

    61.

    68–71 cm; 400–450 g

    63.

    355 mL

    65.

    8 ×× 10−4 cm

    67.

    yes; weight = 89.4 kg

    69.

    5.0 ×× 10−3 mL

    71.

    (a) 1.3 ×× 10−4 kg; (b) 2.32 ×× 108 kg; (c) 5.23 ×× 10−12 m; (d) 8.63 ×× 10−5 kg; (e) 3.76 ×× 10−1 m; (f) 5.4 ×× 10−5 m; (g) 1 ×× 1012 s; (h) 2.7 ×× 10−11 s; (i) 1.5 ×× 10−4 K

    73.

    45.4 L

    75.

    1.0160 ×× 103 kg

    77.

    (a) 394 ft; (b) 5.9634 km; (c) 6.0 ×× 102; (d) 2.64 L; (e) 5.1 ×× 1018 kg; (f) 14.5 kg; (g) 324 mg

    79.

    0.46 m; 1.5 ft/cubit

    81.

    Yes, the acid’s volume is 123 mL.

    83.

    62.6 in (about 5 ft 3 in.) and 101 lb

    85.

    (a) 3.81 cm ×× 8.89 cm ×× 2.44 m; (b) 40.6 cm

    87.

    2.70 g/cm3

    89.

    (a) 81.6 g; (b) 17.6 g

    91.

    (a) 5.1 mL; (b) 37 L

    93.

    5371 °F, 3239 K

    95.

    −23 °C, 250 K

    97.

    −33.4 °C, 239.8 K

    99.

    113 °F


    This page titled 17.13.0: Chapter 1 is shared under a not declared license and was authored, remixed, and/or curated by Lisa Sharpe Elles.

    • Was this article helpful?