Worksheet 7B Solutions
- Page ID
- 95067
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q1
We are given the solution to the variational theory for the harmonic oscillator with trial function:
\[| \phi(x)\rangle =\dfrac{1}{1+\beta x^2}\label{1}\]
\[E_\phi=\dfrac{\langle\phi|\hat H|\phi\rangle}{\langle\phi |\phi\rangle}\label{2}\]
\[E_\phi=\dfrac{\langle\phi|\hat H|\phi\rangle}{\langle\phi |\phi\rangle}=\dfrac{\hbar^2\beta}{4\mu}+\dfrac{k}{2\beta}\label{3}\]
To solve for the energy we need to minimize the parameter \(\beta\)
\[\dfrac{dE_\phi}{d\beta}=0\label{4}\]
\[\dfrac{dE_\phi}{d\beta}= \dfrac{\hbar^2}{4\mu} - \dfrac{k}{2\beta^2} = 0 \label{5}\]
Solve for \(\beta\)
\[\beta^2 = \dfrac{4k\mu}{2\hbar^2} = \dfrac{2k\mu}{\hbar^2}\label{6}\]
\[\beta = \sqrt{ \dfrac{2k\mu}{\hbar^2}} \label{7}\]
Put beta back in to the formula to get the energy
\[E_\phi = \dfrac{\hbar^2 \sqrt{ \dfrac{2k\mu}{\hbar^2}}}{4\mu}+\dfrac{k}{2 \sqrt{ \dfrac{2k\mu}{\hbar^2}}} \label{8}\]
Simplify
\[E_\phi = \dfrac{\hbar}{2}\sqrt{\dfrac{k}{\mu}}(\dfrac{\sqrt{2}}{2} + \dfrac{1}{\sqrt{2}}) \label{9}\]
\[E_\phi = \dfrac{\hbar}{\sqrt{2}}\sqrt{\dfrac{k}{\mu}} \label{10}\]
I left the square roots seperate because from the Harmonic Oscillator remember the angular frequency \(\omega = \sqrt{\dfrac{k}{\mu}}\)
\[E_\phi = \dfrac{\hbar}{\sqrt{2}}\omega \label{11}\]
Compare this to the ground state Harmonic Oscillator energy
Q2
The ground state quantum number is \(n=0\)
\[E_{n=0, H.O.} = \hbar\omega(n + \dfrac{1}{2}) = \dfrac{\hbar\omega}{2} \label{12} \]
The approximation with this trail wave function is not great.
\[E_\phi = \dfrac{\hbar}{\sqrt{2}}\omega > E_{n=0, H.O.} =\dfrac{\hbar\omega}{2} \label{13} \]
The percent difference
\[\dfrac{E_\phi - E_{n=0, H.O.} }{E_{n=0, H.O.}} = \dfrac{\dfrac{\hbar\omega}{\sqrt{2}} - \dfrac{\hbar\omega}{2}}{ \dfrac{\hbar\omega}{2}} \label{14} \]
\[\dfrac{E_\phi - E_{n=0, H.O.} }{E_{n=0, H.O.}} = 2({\dfrac{1}{\sqrt{2}} - \dfrac{1}{2}}) = \dfrac{2}{\sqrt{2}} - 1 =\sqrt{2} -1 = 0.414 \label{15} \]
\(40\%\) that's pretty bad.
If we use the trial function: \(|\phi(x) \rangle =e^{-\beta x^2}\)
You should get the exact energy for the Harmonic Oscillator since it is the exact wavefunction.