Skip to main content
Chemistry LibreTexts

Homework 7A

  • Page ID
    143078
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Name: ______________________________

    Section: _____________________________

    Student ID#:__________________________

    Q1

    Evaluate the following commutators:

    1. \( \left[ \hat{L_x}, \hat{L_y}\right] \)
    2. \(\left[\hat{L_z}, \left[ \hat{L_y}, \hat{L_x}\right]\right] \)
    3. \(\left[\hat{L_x}, \left[ \hat{L^2_y}, \hat{L_z}\right]\right] \)
    4. \( \left[\hat{L_y}, \left[ \hat{L^2}, \hat{L_z}\right]\right] \)
    5. \( \hat{L_z}\left[ \hat{L_x}, \hat{L_y}\right] \)
    6. \( \hat{L^2}\left[ \hat{L_x}, \hat{L_y}\right] \)

    Q2

    Show that the hydrogenic wavefunctions \( \psi_{1s} \) and \( \psi_{2s} \) are mutually orthogonal and normalized.

    Q3

    Determine the probability of finding an electron between each of the following radii for each given orbital. Using your favorite plotting tool or program, plot the probability as a function of radius. Identify each requested region.

    Orbital 0 - \(a_o\) 0 - 168 pm 168 - 508 pm 508 - 1,000,000,000 pm
    1s        
    2s        
    3s        

    Q4

    Calculate the average radial expectation value \( \langle r \rangle \) of electrons in the following hydrogenic orbitals (as a function of \(Z\)).

    1. 1s
    2. \(2p_z\)
    3. 2s

    Hint: This requires volume integration! Do not forget the \(4\pi r^2 \) spherical volume element.

    Q5

    Calculate the uncertainty of the radius of the electron in the 1s wavefunction (i.e., \( \langle \Delta r \rangle \) ).

     

    Q6

    1. What is the average value of the kinetic energy for the \( \psi_{210} \) wavefunction?
    2. What is the average value of the potential energy for the \( \psi_{210} \) wavefunction?
    3. What is the relationship between the kinetic and potential energies in terms of magnitude (Hint: Virial Theorem)?

    Q7

    How many angular and radial nodes are there for the following hydrogenic orbitals/wavefunctions?

    1. \( \psi_{210} (r,\theta, \phi ) \)
    2. \( \psi_{2s} (r,\theta, \phi ) \)
    3. \( \psi_{2p_z} (r,\theta, \phi ) \)

    Q8

    For the following H orbitals, locate the radial and angular nodes.

    1. \( \psi_{1s} (r,\theta, \phi ) \)
    2. \( \psi_{2s} (r,\theta, \phi ) \)
    3. \( \psi_{2p_x} (r,\theta, \phi ) \)
    4. \( \psi_{2p_y} (r,\theta, \phi ) \)
    5. \( \psi_{2p_z} (r,\theta, \phi ) \)
    6. \( \psi_{3s} (r,\theta, \phi ) \)
    7. \( \psi_{3p_x} (r,\theta, \phi ) \)
     

    Q9

    Evaluate the trial energy of the unnormalized trial function

    \[ | \varphi \rangle = x(L−x) \rangle \]

    to estimate the ground state energy for a particle in a one-dimensional box of length \(L\). (Hint: If you want the general pain, you can find this answer in this paper, but it is not necessary). You are not minimizing a parameter in this question.

    Q10

    Consider the "quartic oscillator" with the following Hamiltonian

    \[ \hat{H} = \dfrac{1}{2} \dfrac{d^2}{dx^2} + \dfrac{1}{2} x^4\]

    1. What is the zero point energy of this this system determined with the variational method approximation using the unnormalized trial wavefunction \[ | \varphi \rangle = e^{-\dfrac{1}{2} \alpha (x-x_o)^2} \]
    2. What is the value of \(\alpha\) for the trial wavefunction used in this approximation?
    3. How accurate would this wavefunction be in estimating the zero point energy of the harmonic oscillator?

    Homework 7A is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?