Homework 2
- Page ID
- 143061
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Name: ______________________________
Section: _____________________________
Student ID#:__________________________
Template:HideTOCQ2.1
Calculate the de Broglie wavelength and the kinetic energy of each of the following:
- A 20 kg (really heavy) frisbee with a velocity of 2 m/s
- A 2 g pineapple thrown at a velocity of 20,000 m/s
- The moon as it orbits the Earth
- An electron with a velocity of \(1 \times 10^6\) cm/s
- A turtle crossing the sidewalk with a velocity of 10 cm/s. Assume the turtle has a mass of 100 kg (big turtle).
- An electron in the n = 1 Bohr orbital which has a velocity of \( 2.19 \times 10^6\) m/s
Q2.2
The standard accelerating voltage for a scanning electron microscope is 20 keV. Find the de Broglie wavelength of electrons that have been accelerated from rest through that potential difference (V) of 20 keV. (Hint: kinetic energy is eV).
Q2.3
A thermalized electron is an electron with the kinetic energy given by \(k_BT\) with \(k_B\) as the Boltzmann constant. Calculate the de Broglie wavelength of a thermalized electron at 298 K.
Q2.4
Calculate the longest and shortest wavelengths of the highest and lowest energy of the Paschan emission line of hydrogen.
- What is the angular momentum in the lowest energy state of the Bohr hydrogen atom?
- What is the velocity of the electron in the lowest energy state?
Q2.5
- What is the minimum uncertainly in the velocity of a projectile (mass = 1 kg) that lands within \(10.0 \times 10^6\;\) m of a target?
- What is the maximum uncertainty in the position of a rabbit (mass = 2 kg) with a speed somewhere between 200.000001 m/s and 200.00000 m/s?
Q2.6
A quantum mechanical chicken crosses the sidewalk at a velocity of \(1 \times 10^{32}\) nm/sec, with an uncertainty of \(10^{-295}\) mm/sec. Calculate the uncertainty in location of the chicken. (Assume the chicken has a mass of 1 kg.)
Q2.7
Show that the functions \(e^{i(k x + ωt)}\) and \(\cos(k\,x - \omega\, t)\) also satisfy the classical wave equation. Note that \(i\) is a constant equal to \(\sqrt {-1}\).
Q2.8
For the linear homogeneous differential equation
\[ \dfrac{d^2u(t)}{dt^2} + \omega^2 u(t) = 0\ \label{2.0}\]
the general solution is
\[ u(t) = A \cos(\omega t) + B \sin(\omega t) \label{2.1}\]
which can also be rewritten to
\[ u(t) = C \cos(\omega t + \phi) \label{2.2}\]
or
\[ u(t) = C \sin(\omega t + \psi) \label{2.3}\]
- Show that Equations \(\ref{2.1}\) through \(\ref{2.3}\) are equivalent
- Demonstrate that each is the solution to the original differential equation (Equation \(\ref{2.0}\)).
- Derive the relationships between \(C\) and \(\phi\) in terms of \(A\) and \(B\).
- Derive the relationships between \(C\) and \(\psi\) in terms of \(A\) and \(B\).
Hint: You may need to use the following trigonometric identities
\[\sin( \alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta\]
\[\cos( \alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta\]
Q2.9
The spatial part of the wavefunction of a particle constrained between 0 and L and can be described as:
\[ \dfrac{\partial^2 u(x)}{\partial x^2} + \left( \dfrac{8\pi^2m E}{h^2} \right) u(x)= 0 \label{2.4}\]
with the boundary condition:
\[u(0)= u(L) = 0 \label{2.5}\]
For this system, \(E\) is the energy of the particle and u(x) describes the spatial part of its wave nature.
- Solve Equation \(\ref{2.4}\) subject to the boundary constraints in Equation \(\ref{2.5}\).
- What values of energy are possible?
- Is the system quantized and why or why not?
Q2.10
The total energy is the sum of the Kinetic and Potential energies (E = K.E. + V). The exponential form of the solution to the wave equation is:
\[ \Psi = a e^{2\pi i x / \lambda} e^{-2\pi i \nu t} \label{2.6} \]
And the de Broglie relation is:
\[\lambda = \dfrac{h}{mv} = \dfrac{h}{p} \label{2.7} \]
- Rewrite the generalized 1D time-dependent wave equation in terms of energy (instead of wavelength).
- Assume that an electron with this wavefunction moves in a finite potential that is greater than \(E\). What is the behavior of the wavefunction at this potential?