Skip to main content
Chemistry LibreTexts

Homework 13 (Due 5/6/16)

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Name: ______________________________

    Section: _____________________________

    Student ID#:__________________________


    If the uncertainty of measuring the position of an electron is 2.0 Å, what is the uncertainty of simultaneously measuring its velocity? Hint: What formula deals with uncertainty of measurements?


    An old small balloon contains some oxygen. The diameter of the balloon is 2.5 X 10-5 m. What is the uncertainty velocity of an oxygen molecule that is trapped inside.


    Which of the wavefunctions below cannot have physical significance in the interval shown? Explain why?


    IF a beam of electrons with fixed kinetic energy E is incident on a potential barrier with a height of 6 eV and width of 0.7 nm. with \(E<V\). What is the kinetic energy E of each electron if the tunneling probability or transmittance is 0.001 (i.e. 0.1% of the electrons tunnel through the barrier)?


    Identify the similarities and differences between the time-independent Schrödinger equations and the equation governing the law of conservation of energy.

    Homework 13 (Due 5/6/16) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?