Skip to main content
Chemistry LibreTexts

Solutions 13

  • Page ID
    47392
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    S13.1

    Use the relationship between momentum and velocity and Heisenberg's uncertainty principle to derive a formula for the uncertainty of velocity.

    $$ p = m_e v \]

    $$ \Delta p = m_e \Delta v \]

    $$ \Delta x \Delta p \geq \frac{h}{4 \pi} \]

    $$ \Delta v \geq \frac{h}{4 \pi m_e \Delta x} \]

    Plug in the given values

    $$ \Delta v \geq \frac{6.626 \times 10^{-34}\ J\ s}{4 \pi \times 9.109 \times 10^{-31}\ kg \times 2.0\ Å \times \frac{m}{10^{10}\ Å}} \times \frac{\frac{kg\ m^2}{s^2}}{J} \]

    $$ \Delta v \geq 2.9 \times 10^5\ m/s \]

    S13.2

    Use the direct application of the uncertainty principle:

    \[ \Delta x \Delta p \geq \dfrac{h}{4\pi}\]

    Let's consider the molecule has an uncertainly that is ±radius±radius of the balloon.

    Δx=1.25×10−5m

    The uncertainty of the momentum of the molecule can be estimated via the uncertainty principle.

    \[\Delta p = \dfrac{h}{4\pi\Delta x}=\dfrac{6.626 \times 10^{-34} J s}{4\pi \times 1.25\times10^{-5}m} \times \frac{\frac{kg\ m^2}{s^2}}{J} =4.22 \times 10^{-30} kg m s^{-1}\]

    This can be converted to uncertainty in velocity via

    p=mv

    or

    Δp=mΔv

    The mass of the oxygen molecule is:

    \[m=\dfrac{M_{O_{2}} \times 1 kg/1000 g}{N_{A}}=\dfrac{32 g/mol \times 1 kg/1000g}{6.02 \times10^{23} mol^{-1}}=5.32\times10^{-26} kg\]

    Therefore,

    \[Δv=\dfrac{Δp}{m}=\dfrac{4.22 \times 10^{-30} kg m s^{-1}}{5.32 \times 10^{-26} kg}=7.93 \times 10^{-5} m s^{-1}\]

    S13.3

    B, C, D cannot have physical significance.

    Reasons:

    B: The wavefunction has discontinuity;

    C: The value of the wavefunction goes to infinity as horizontal axis approaches zero (will make the probability infinity which is not physicallly possible);

    D: The wavefunction does not have single value.

    S13.4

    The tunneling probability can be expressed as

    \[P=exp[-\dfrac{4 \pi a}{h} [2m(V-E)]^{1/2}]\]

    where a is the width of the barrier a=7 x 10-10 m.

    The mass of the electron is 9.1x10-31 kg and V = 6 eV x 1.6*10-19 J/eV = 9.6 x 10-19 J.

    Take the natural log of the equation:

    \[ln(P)=-\dfrac{4 \pi a}{h}{2m(V-E)}^{1/2}=-2 a [\dfrac{2m/}{ħ^{2}}(V-E)]^{1/2}\]

    So,

    \[[\dfrac{2m}{ħ^{2}}(V-E)]^{1/2}=-\dfrac{0.001}{2 \times 7 \times 10^{-10} m}=4.93 \times 10^9 m^{-1}\]

    \[ħ=\dfrac{h}{2\pi}\]

    \[E=V-\dfrac{ħ ^{2} (4.93 \times 10^9 m^{-1})^{2}}{2m}=9.6 \times 10^{-19} J - \dfrac{(1.054 \times 10^{-34} J s \times 4.93 \times 10^{9} m^{-1})^2}{2\times 9.1 \times 10^{-31} kg}=8.11 \times 10^{-19} J = 5.07 eV \]

    An electron with E=5.07 eV has a probability of 0.001 or 0.1% of tunneling through the 6 eV barrier.

    S13.5

    Identify the similarities and differences between the time-independent Schrödinger equations and the equation governing the law of conservation of energy.

    Similarities: Both equations are saying that the sum of kinetic energy and potential energy is the total energy;

    Differences: In the equation governing the law of conservation of enegy, T and V are kinetic and potential energy functions, whereas in the time-independent Schrodinger equation, the T and V functions are replaced with kinetic energy and potential energy operators.


    Solutions 13 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?