Skip to main content
Chemistry LibreTexts

3.8: Resonance Effects on Hybridization and Bonding

  • Page ID
    456045
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives

    By the end of this section, you will be able to:

    • Identify delocalized molecular orbitals
    • Explain the concept of delocalization and draw minor resonance contributors that affect hybridization
    • Identify the hybridization of atoms with delocalized molecular orbitals

    Delocalization of Molecular Orbitals

    As described in Chapter 2.5, resonance forms of a molecule cannot completely describe the bonding in a molecule without taking into account each resonance structure and averaging these as a resonance hybrid. This phenomenon is not limited to bond order and charge distribution, and can be applied to molecular orbitals as well. Delocalized molecular orbitals are orbitals that are extended across multiple atoms rather than being constrained to one or two atoms, and thus molecules with resonance structures will have delocalized molecular orbitals.

    delocalized pi system.jpeg

    Figure \(\PageIndex{1}\): different visualizations of benzene.

    Benzene has two major resonance structures with alternating double bonds (Figure \(\PageIndex{1}\)). In the resonance hybrid (and in the actual molecule), each C-C bond is effectively 1.5 bonds, due to resonance. The p orbitals that make up each π bond are conserved in the resonance structures and resonance hybrid, as seen in the delocalized π system.

    The hybridization of each carbon in the benzene ring is sp2, and this hybridization is conserved in the resonance hybrid and delocalized π system that is made up of the unhybridized p orbitals. 

    Hybridization of Resonance Contributors

    Returning to O3 (ozone) from Chapter 3.6:

     

    ozone example - step 6 - two possible resonance forms.svg

     

    Figure \(\PageIndex{2}\): Two resonance contributors of Ozone

    The terminal oxygen atoms on each resonance structure have a different number of regions of electron density. At first glance, the oxygen atoms would have different hybridizations as a result. However, the resonance hybrid is the true structure of the molecule, with a partial negative charge on each terminal oxygen and a full positive charge on the central oxygen.

    ozone resonance hybrid.jpeg

    Figure \(\PageIndex{3}\): Ozone resonance Hybrid

    The resonance hybrid (Figure \(\PageIndex{3}\)) shows how the p orbitals on all three oxygen atoms form a delocalized molecular orbital. Thus, each oxygen is sp2 hybridized, with the p orbitals forming a π system, and 5 lone pairs in sp2 hybridized orbitals on the oxygen atoms. 

    This delocalization is favorable for the molecule, because the electrons in the p orbitals are spread out over more atoms. When possible, molecules will adopt hybridization arrangements to allow for delocalization of electrons. 

    An orbital picture of the resonance hybrid could be drawn as shown in Figure \(\PageIndex{4}\), with the p orbitals and π system shown in grey and the hybridized orbitals shown in blue (minor lobes of hybridized orbitals not shown for clarity). The lone pairs are in hybridized orbitals, and the π system has 4 electrons (not shown) spread out over three atoms. This delocalization of electrons stabilizes the molecule and encourages the sp2 hybridization. 

    ozone resonance hybrid 2.jpeg

    Figure \(\PageIndex{4}\): Delocalized molecular orbitals in Ozone.

    Minor Resonance Contributors

    While O3 (above) has two equal resonance contributors, delocalization will occur when possible, even when this involves minor resonance contributors, as shown in Figure \(\PageIndex{5}\)

    formamide resonance.jpeg

     

    Figure \(\PageIndex{5}\): Major and Minor resonance forms of formamide, and its resonance hybrid.

    The resulting hybridization of each atom in formamide will be in accordance with the resonance hybrid, which means that N, C, and O will each have an unhybridized p orbital as part of the delocalized molecular orbital. The hybridizations can be seen in Figure \(\PageIndex{6}\).

    formamide hybridization.jpeg

    Figure \(\PageIndex{6}\): Hybridization of atoms in formamide due to resonance delocalization.

     


    This page titled 3.8: Resonance Effects on Hybridization and Bonding is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax.

    • Was this article helpful?