# 19: Gibbs Energy and Thermodynamics

- Page ID
- 219287

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

- 19.2: Spontaneous and Nonspontaneous Processes
- Chemical and physical processes have a natural tendency to occur in one direction under certain conditions. A spontaneous process occurs without the need for a continual input of energy from some external source, while a nonspontaneous process requires such. Systems undergoing a spontaneous process may or may not experience a gain or loss of energy, but they will experience a change in the way matter and/or energy is distributed within the system.

- 19.3: Entropy and the Second Law of Thermodynamics
- Entropy (S) is a state function whose value increases with an increase in the number of available microstates.For a given system, the greater the number of microstates, the higher the entropy. During a spontaneous process, the entropy of the universe increases.

- 19.4: Entropy Changes Associated with State Changes
- under construction

- 19.6: Gibbs Energy
- We can predict whether a reaction will occur spontaneously by combining the entropy, enthalpy, and temperature of a system in a new state function called Gibbs free energy (G). The change in free energy (ΔG) is the difference between the heat released during a process and the heat released for the same process occurring in a reversible manner. If a system is at equilibrium, ΔG = 0. If the process is spontaneous, ΔG < 0. If the process is not spontaneous as written.

- 19.7: Entropy Changes in Chemical Reactions
- Changes in internal energy, that are not accompanied by a temperature change, might reflect changes in the entropy of the system.

- 19.8: Gibbs Energy Changes in Chemical Reactions
- We can predict whether a reaction will occur spontaneously by combining the entropy, enthalpy, and temperature of a system in a new state function called Gibbs free energy (G). The change in free energy (ΔG) is the difference between the heat released during a process and the heat released for the same process occurring in a reversible manner. If a system is at equilibrium, ΔG = 0. If the process is spontaneous, ΔG < 0. If the process is not spontaneous as written.

- 19.9: Gibbs Energy Changers for Non-Standard States
- For a reversible process (with no external work), the change in free energy can be expressed in terms of volume, pressure, entropy, and temperature. If ΔG° < 0, then K > 1, and products are favored over reactants. If ΔG° > 0, then K < 1, and reactants are favored over products. If ΔG° = 0, then K = 1, and the system is at equilibrium. We can use the measured equilibrium constant K at one temperature and ΔH° to estimate the equilibrium constant for a reaction at any other temperature.

- 19.10: Gibbs Energy and Equilibrium
- For a reversible process (with no external work), the change in free energy can be expressed in terms of volume, pressure, entropy, and temperature. If ΔG° < 0, then K > 1, and products are favored over reactants. If ΔG° > 0, then K < 1, and reactants are favored over products. If ΔG° = 0, then K = 1, and the system is at equilibrium. We can use the measured equilibrium constant K at one temperature and ΔH° to estimate the equilibrium constant for a reaction at any other temperature.