2.1: Chemical Equilibria
- Page ID
- 206919
A chemical reaction is usually written in a way that suggests it proceeds in one direction, the direction in which we read, but all chemical reactions are reversible, and both the forward and reverse reaction occur to one degree or another depending on conditions. In a chemical equilibrium, the forward and reverse reactions occur at equal rates, and the concentrations of products and reactants remain constant. If we run a reaction in a closed system so that the products cannot escape, we often find the reaction does not give a 100% yield of products. Instead, some reactants remain after the concentrations stop changing. At this point, when there is no further change in concentrations of reactants and products, we say the reaction is at equilibrium. A mixture of reactants and products is found at equilibrium.
For example, when we place a sample of dinitrogen tetroxide (\(N_2O_4\), a colorless gas) in a glass tube, it forms nitrogen dioxide (\(\ce{NO2}\), a brown gas) by the reaction
\[\ce{ N2O4(g) \rightleftharpoons 2NO2(g)} \label{13.2.1}\]
The color becomes darker as \(\ce{N2O4}\) is converted to \(\ce{NO2}\). When the system reaches equilibrium, both \(\ce{N2O4}\) and \(\ce{NO2}\) are present (Figure \(\PageIndex{1}\)).
![A three-part diagram is shown. At the top of the diagram, three beakers are shown, and each one contains a sealed tube. The tube in the left beaker is full of a colorless gas which is connected to a zoom-in view of the particles in the tube by a downward-facing arrow. This particle view shows seven particles, each composed of two connected blue spheres. Each blue sphere is connected to two red spheres. The tube in the middle beaker is full of a light brown gas which is connected to a zoom-in view of the particles in the tube by a downward-facing arrow. This particle view shows nine particles, five of which are composed of two connected blue spheres. Each blue sphere is connected to two red spheres. The remaining four are composed of two red spheres connected to a blue sphere. The tube in the right beaker is full of a brown gas which is connected to a zoom-in view of the particles in the tube by a downward-facing arrow. This particle view shows eleven particles, three of which are composed of two connected blue spheres. Each blue sphere is connected to two red spheres. The remaining eight are composed of two red spheres connected to a blue sphere. At the bottom of the image are two graphs. The left graph has a y-axis labeled, “Concentration,” and an x-axis labeled, “Time.” A red line labeled, “N O subscript 2,” begins in the bottom left corner of the graph at a point labeled, “0,” and rises near the highest point on the y-axis before it levels off and becomes horizontal. A blue line labeled, “N subscript 2 O subscript 4,” begins near the highest point on the y-axis and drops below the midpoint of the y-axis before leveling off. The right graph has a y-axis labeled, “Rate,” and an x-axis labeled, “Time.” A red line labeled, “k subscript f, [ N subscript 2 O subscript 4 ],” begins in the bottom left corner of the graph at a point labeled, “0,” and rises near the middle of the y-axis before it levels off and becomes horizontal. A blue line labeled, “k subscript f, [ N O subscript 2 ] superscript 2,” begins near the highest point on the y-axis and drops to the same point on the y-axis as the red line before leveling off. The point where both lines become horizontal is labeled, “Equilibrium achieved.”](https://chem.libretexts.org/@api/deki/files/60618/CNX_Chem_13_01_equilibrium.jpg?revision=2)
The formation of \(\ce{NO2}\) from \(\ce{N2O4}\) is a reversible reaction, which is identified by the equilibrium arrow (\(\rightleftharpoons\)). All reactions are reversible, but many reactions, for all practical purposes, proceed in one direction until the reactants are exhausted and will reverse only under certain conditions. Such reactions are often depicted with a one-way arrow from reactants to products. Many other reactions, such as the formation of \(\ce{NO2}\) from \(\ce{N2O4}\), are reversible under more easily obtainable conditions and, therefore, are named as such. In a reversible reaction, the reactants can combine to form products and the products can react to form the reactants. Thus, not only can \(\ce{N2O4}\) decompose to form \(\ce{NO2}\), but the \(\ce{NO2}\) produced can react to form \(\ce{N2O4}\). As soon as the forward reaction produces any \(\ce{NO2}\), the reverse reaction begins and \(\ce{NO2}\) starts to react to form \(\ce{N2O4}\). At equilibrium, the concentrations of \(\ce{N2O4}\) and \(\ce{NO2}\) no longer change because the rate of formation of \(\ce{NO2}\) is exactly equal to the rate of consumption of \(\ce{NO2}\), and the rate of formation of \(\ce{N2O4}\) is exactly equal to the rate of consumption of \(\ce{N2O4}\). Chemical equilibrium is a dynamic process: As with the swimmers and the sunbathers, the numbers of each remain constant, yet there is a flux back and forth between them (Figure \(\PageIndex{2}\)).

In a chemical equilibrium, the forward and reverse reactions do not stop, rather they continue to occur at the same rate, leading to constant concentrations of the reactants and the products. Plots showing how the reaction rates and concentrations change with respect to time are shown in Figure \(\PageIndex{1}\).
We can detect a state of equilibrium because the concentrations of reactants and products do not appear to change. However, it is important that we verify that the absence of change is due to equilibrium and not to a reaction rate that is so slow that changes in concentration are difficult to detect.
We use a double arrow when writing an equation for a reversible reaction. Such a reaction may or may not be at equilibrium. For example, Figure \(\PageIndex{1}\) shows the reaction:
\[\ce{N2O4(g) \rightleftharpoons 2NO2(g)} \label{13.2.2}\]
When we wish to speak about one particular component of a reversible reaction, we use a single arrow. For example, in the equilibrium shown in Figure \(\PageIndex{1}\), the rate of the forward reaction
\[\ce{2NO2(g) \rightarrow N2O4(g)} \label{13.2.3}\]
is equal to the rate of the backward reaction
\[\ce{N2O4(g) \rightarrow 2NO2(g)} \label{13.2.4}\]
Contributors
Summary
A reaction is at equilibrium when the amounts of reactants or products no longer change. Chemical equilibrium is a dynamic process, meaning the rate of formation of products by the forward reaction is equal to the rate at which the products re-form reactants by the reverse reaction.
Glossary
- equilibrium
- in chemical reactions, the state in which the conversion of reactants into products and the conversion of products back into reactants occur simultaneously at the same rate; state of balance
- reversible reaction
- chemical reaction that can proceed in both the forward and reverse directions under given conditions
Contributors
Paul Flowers (University of North Carolina - Pembroke), Klaus Theopold (University of Delaware) and Richard Langley (Stephen F. Austin State University) with contributing authors. Textbook content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/contents/85abf193-2bd...a7ac8df6@9.110).