Skip to main content
Chemistry LibreTexts

7.5: Entropy Can Be Expressed in Terms of a Partition Function

  • Page ID
    275985
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We have seen that the partition function of a system gives us the key to calculate thermodynamic functions like energy or pressure as a moment of the energy distribution. We can extend this formulism to calculate the entropy of a system once its \(Q\) is known. We can start with Boltzmann's (statistical) definition of entropy:

    \[S = k \ln(W) \label{Boltz} \]

    with

    \[W=\frac{A!}{\prod_j{a_j}!} \nonumber \]

    Combining these equations, we obtain:

    \[S_{ensemble} = k \ln\frac{A!}{\prod_j{a_j}!} \nonumber \]

    Rearranging:

    \[S_{ensemble} = k \ln{A!}-k \sum_j{\ln{a_j!}} \nonumber \]

    Using Sterling's approximation:

    \[\begin{split}S_{ensemble} &= k A\ln{A}-k A - k \sum_j{a_j\ln{a_j}} + k \sum_j{a_j} \\ &= k A\ln{A}- k \sum_j{a_j\ln{a_j}}\end{split} \nonumber \]

    Since:

    \[\sum_j{a_j}=A \nonumber \]

    The probability of finding the system in state \(a_j\) is:

    \[p_j=\frac{a_j}{A} \nonumber \]

    Rearranging:

    \[a_j = p_jA \nonumber \]

    Plugging in:

    \[S_{ensemble}=k A\ln{A}- k \sum_j{p_jA\ln{p_jA}} \nonumber \]

    Rearranging:

    \[S_{ensemble}=k A\ln{A}- k \sum_j{p_jA\ln{p_j}}- k \sum_j{p_jA\ln{A}} \nonumber \]

    If \(A\) is constant, then:

    \[k \sum_j{p_jA\ln{A}} = k A\ln{A}\sum_j{p_j} \nonumber \]

    Since:

    \(\sum_j{p_j} = 1\)

    We get:

    \[S_{ensemble}=k A\ln{A}- k \sum_j{p_jA\ln{p_j}}- k A\ln{A} \nonumber \]

    The first and last term cancel out:

    \[S_{ensemble}=- k \sum_j{p_jA\ln{p_j}} \nonumber \]

    We can divide by \(A\) to get the entropy of the system:

    \[S_{system}=- k \sum_j{p_j\ln{p_j}} \label{eq10}\]

    If all the \(p_j\) are zero except for the for one, then the system is perfectly ordered and the entropy of the system is zero. The probability of being in state \(j\) is

    \[p_j=\frac{e^{-\beta E_j}}{Q} \label{eq15}\]

    Plugging Equation \ref{eq15} into Equation \ref{eq10} results in

    \[\begin{align*}S &= - k \sum_j{\frac{e^{-\beta E_j}}{Q}\ln{\frac{e^{-\beta E_j}}{Q}}} \\[4pt] &= - k \sum_j{\frac{e^{-\beta E_j}}{Q}\left(-\beta E_j- \ln{Q}\right)} \\[4pt] &= - \beta k \sum_j{\frac{E_je^{-\beta E_j}}{Q}}+\frac{k\ln{Q}}{Q}\sum_j{e^{-\beta E_j}} \end{align*}\]

    Making use of:

    \[\beta k=\frac{1}{T} \nonumber \]

    And:

    \[\sum{\frac{e^{-\beta E_j}}{Q}}=\sum{p_j}=1 \nonumber \]

    We obtain:

    \[S= \dfrac{U}{T} + k\ln Q \label{20.42} \]


    7.5: Entropy Can Be Expressed in Terms of a Partition Function is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?