Skip to main content
Chemistry LibreTexts

5.3: The Average Ensemble Energy is Equal to the Observed Energy of a System

  • Page ID
    426433
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    We will be restricting ourselves to the canonical ensemble (constant temperature and constant pressure). Consider a collection of \(N\) molecules. The probability of finding a molecule with energy \(E_i\) is equal to the fraction of the molecules with energy \(E_i\). That is, in a collection of \(N\) molecules, the probability of the molecules having energy \(E_i\):

    \[P_i = \dfrac{n_i}{N} \nonumber \]

    This is the directly obtained from the Boltzmann distribution, where the fraction of molecules \(n_i /N\) having energy \(E_i\) is:

    \[P_i = \dfrac{n_i}{N} = \dfrac{e^{-E_i/kT}}{Q} \label{BD1} \]

    The average energy is obtained by multiplying \(E_i\) with its probability and summing over all \(i\):

    \[ \langle E \rangle = \sum_i E_i P_i \label{Mean1} \]

    Equation \(\ref{Mean1}\) is the standard average over a distribution commonly found in quantum mechanics as expectation values. The quantum mechanical version of this Equation is

    \[ \langle \psi | \hat{H} | \psi \rangle \nonumber \]

    where \(\Psi^2\) is the distribution function that the Hamiltonian operator (e.g., energy) is averaged over; this equation is also the starting point in the Variational method approximation.

    Equation \(\ref{Mean1}\) can be solved by plugging in the Boltzmann distribution (Equation \(\ref{BD1}\)):

    \[ \langle E \rangle = \sum_i{ \dfrac{E_ie^{-E_i/ kT}}{Q}} \label{Eq1} \]

    Where \(Q\) is the partition function:

    \[ Q = \sum_i{e^{-\dfrac{E_i}{kT}}} \nonumber \]

    We can take the derivative of \(\ln{Q}\) with respect to temperature, \(T\):

    \[ \left(\dfrac{\partial \ln{Q}}{\partial T}\right) = \dfrac{1}{kT^2}\sum_i{\dfrac{E_i e^{-E_i/kT}}{Q}} \label{Eq2} \]

    Comparing Equation \(\ref{Eq1}\) with \(\ref{Eq2}\), we obtain:

    \[ \langle E \rangle = kT^2 \left(\dfrac{\partial \ln{Q}}{\partial T}\right) \nonumber \]

    It is common to write these equations in terms of \(\beta\), where:

    \[ \beta = \dfrac{1}{kT} \nonumber \]

    The partition function becomes:

    \[ Q = \sum_i{e^{-\beta E_i}} \nonumber \]

    We can take the derivative of \(\ln{Q}\) with respect to \(\beta\):

    \[ \left(\dfrac{\partial \ln{Q}}{\partial\beta}\right) = -\sum_i{\dfrac{E_i e^{-\beta E_i}}{Q}} \nonumber \]

    And obtain:

    \[ \langle E \rangle = -\left(\dfrac{\partial \ln{Q}}{\partial\beta}\right) \nonumber \]

    Replacing \(1/kT\) with \(\beta\) often simplifies the math and is easier to use.

    It is not uncommon to find the notation changes: \(Z\) instead of \(Q\) and \(\bar{E}\) instead of \( \langle E \rangle \).

     


    5.3: The Average Ensemble Energy is Equal to the Observed Energy of a System is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Jerry LaRue.