Skip to main content
Chemistry LibreTexts

9: Organic Chemistry

  • Page ID
    211197
    • 9.1: Alkanes- Saturated Hydrocarbons
      Simple alkanes exist as a homologous series, in which adjacent members differ by a CH2 unit.
    • 9.2: Alkenes and Alkynes
      As noted before, alkenes are hydrocarbons with carbon-to-carbon double bonds (R2C=CR2) and alkynes are hydrocarbons with carbon-to-carbon triple bonds (R–C≡C–R). Collectively, they are called unsaturated hydrocarbons because they have fewer hydrogen atoms than does an alkane with the same number of carbon atoms, as is indicated in the following general formulas:
    • 9.3: Hydrocarbon Reactions
      The alkanes and cycloalkanes, with the exception of cyclopropane, are probably the least chemically reactive class of organic compounds. Alkanes contain strong carbon-carbon single bonds and strong carbon-hydrogen bonds. The carbon-hydrogen bonds are only very slightly polar. Alkanes can be burned, alkanes can react with some of the halogens, breaking carbon-hydrogen bonds, and alkanes can crack by breaking the carbon-carbon bonds.
    • 9.4: Aromatic Hydrocarbons
      Aromatic hydrocarbons contain ring structures with delocalized π electron systems.
    • 9.5: Functional Groups
      Functional groups are atoms or small groups of atoms (two to four) that exhibit a characteristic reactivity. A particular functional group will almost always display its characteristic chemical behavior when it is present in a compound. Because of their importance in understanding organic chemistry, functional groups have characteristic names that often carry over in the naming of individual compounds incorporating specific groups
    • 9.6: Alcohols
      In the IUPAC system, alcohols are named by changing the ending of the parent alkane name to -ol. Alcohols are classified according to the number of carbon atoms attached to the carbon atom that is attached to the OH group. Alcohols have higher boiling points than do ethers and alkanes of similar molar masses because the OH group allows alcohol molecules to engage in hydrogen bonding. Alcohols of four or fewer carbon atoms are soluble in water because the alcohol molecules engage in hydrogen bond
    • 9.7: Aldehydes and Ketones
      The common names of aldehydes are taken from the names of the corresponding carboxylic acids: formaldehyde, acetaldehyde, and so on. The polar carbon-to-oxygen double bond causes aldehydes and ketones to have higher boiling points than those of ethers and alkanes of similar molar masses but lower than those of comparable alcohols that engage in intermolecular hydrogen bonding. Aldehydes are readily oxidized to carboxylic acids, whereas ketones resist oxidation.
    • 9.8: Carboxylic Acids and Esters
      Aldehydes and ketones are characterized by the presence of a carbonyl group (C=O), and their reactivity can generally be understood by recognizing that the carbonyl carbon contains a partial positive charge ( δ+ ) and the carbonyl oxygen contains a partial negative charge ( δ− ). Aldehydes are typically more reactive than ketones.
    • 9.9: Amines
      An amine is a derivative of ammonia in which one, two, or all three hydrogen atoms are replaced by hydrocarbon groups. Amines are classified as primary, secondary, or tertiary by the number of hydrocarbon groups attached to the nitrogen atom. Primary and secondary amines have higher boiling points than those of alkanes or ethers of similar molar mass because they can engage in intermolecular hydrogen bonding. Amines are bases; they react with acids to form salts.