Skip to main content
Chemistry LibreTexts

3: Solutions and Colloids

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    • 3.1: Some Basic Definitions
      Solutions are composed of a solvent (major component) and a solute (minor component). Concentration is the expression of the amount of solute in a given amount of solvent and can be described by several qualitative terms. Solubility is a specific amount of solute that can dissolve in a given amount of solvent. "Like dissolves like" is a useful rule for deciding if a solute will be soluble in a solvent.
    • 3.2: Solubility
      Previously, we looked at the primary characteristics of a solution and how water is able to dissolve solid solutes. There are many examples of solutions that do not involve water at all, or solutions that involve solutes that are not solids.
    • 3.3: The Dissolving Process
      A solution is a homogenous mixture consisting of a solute dissolved into a solvent. The solute is the substance that is being dissolved, while the solvent is the dissolving medium. Solutions can be formed with many different types and forms of solutes and solvents. In this chapter, we will focus on solution where the solvent is water. An aqueous solution is water that contains one or more dissolved substance. The dissolved substances in an aqueous solution may be solids, gases, or other liquids.
    • 3.4: Concentrations of Solutions
      There are several ways to express the amount of solute present in a solution. The concentration of a solution is a measure of the amount of solute that has been dissolved in a given amount of solvent or solution. A concentrated solution is one that has a relatively large amount of dissolved solute. A dilute solution is one that has a relatively small amount of dissolved solute. However, these terms are relative, and we need to be able to express concentration in a more exact, quantitative manner
    • 3.5: Stoichiometry calculations with solutions
      Know how to apply concentration units as conversion factors.
    • 3.6: Colligative Properties of Solutions
      Colligative properties depend only on the number of dissolved particles (that is, the concentration), not their identity. Raoult's law is concerned with the vapor pressure depression of solutions. The boiling points of solutions are always higher, and the freezing points of solutions are always lower, than those of the pure solvent.
    • 3.7: Colligative Properties of Ionic Solutes
      For ionic solutes, the calculation of colligative properties must include the fact that the solutes separate into multiple particles when they dissolve. The equations for calculating colligative properties of solutions of ionic solvents include the van't Hoff factor, i.
    • 3.8: Colloids and Suspensions
      A suspension is a heterogeneous mixture in which some of the particles settle out of the mixture upon standing. The particles in a suspension are far larger than those of a solution, so gravity is able to pull them down out of the dispersion medium (e.g., water). A colloid is a heterogeneous mixture in which the dispersed particles are intermediate in size between those of a solution and a suspension. The particles are spread evenly throughout the medium, which can be a solid, liquid, or gas.
    • 3.9: Dialysis
      Dialysis is the separation of colloids from dissolved ions or molecules of small dimensions, or crystalloid, in a solution.  Dialysis is a process that is like osmosis. Osmosis is the process in which there is a diffusion of a solvent through a semipermeable membrane.

    3: Solutions and Colloids is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?