1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

=pod
=head1 NAME
BN_generate_prime_ex, BN_is_prime_ex, BN_is_prime_fasttest_ex, BN_GENCB_call,
BN_GENCB_new, BN_GENCB_free, BN_GENCB_set_old, BN_GENCB_set, BN_GENCB_get_arg,
BN_generate_prime, BN_is_prime, BN_is_prime_fasttest  generate primes and test
for primality
=head1 SYNOPSIS
#include <openssl/bn.h>
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
const BIGNUM *rem, BN_GENCB *cb);
int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb);
int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb);
int BN_GENCB_call(BN_GENCB *cb, int a, int b);
BN_GENCB *BN_GENCB_new(void);
void BN_GENCB_free(BN_GENCB *cb);
void BN_GENCB_set_old(BN_GENCB *gencb,
void (*callback)(int, int, void *), void *cb_arg);
void BN_GENCB_set(BN_GENCB *gencb,
int (*callback)(int, int, BN_GENCB *), void *cb_arg);
void *BN_GENCB_get_arg(BN_GENCB *cb);
Deprecated:
#if OPENSSL_API_COMPAT < 0x00908000L
BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add,
BIGNUM *rem, void (*callback)(int, int, void *),
void *cb_arg);
int BN_is_prime(const BIGNUM *a, int checks,
void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg);
int BN_is_prime_fasttest(const BIGNUM *a, int checks,
void (*callback)(int, int, void *), BN_CTX *ctx,
void *cb_arg, int do_trial_division);
#endif
=head1 DESCRIPTION
BN_generate_prime_ex() generates a pseudorandom prime number of
at least bit length B<bits>. The returned number is probably prime
with a negligible error. If B<add> is B<NULL> the returned prime
number will have exact bit length B<bits> with the top most two
bits set.
If B<ret> is not B<NULL>, it will be used to store the number.
If B<cb> is not B<NULL>, it is used as follows:
=over 2
=item *
B<BN_GENCB_call(cb, 0, i)> is called after generating the ith
potential prime number.
=item *
While the number is being tested for primality,
B<BN_GENCB_call(cb, 1, j)> is called as described below.
=item *
When a prime has been found, B<BN_GENCB_call(cb, 2, i)> is called.
=item *
The callers of BN_generate_prime_ex() may call B<BN_GENCB_call(cb, i, j)> with
other values as described in their respective man pages; see L</SEE ALSO>.
=back
The prime may have to fulfill additional requirements for use in
DiffieHellman key exchange:
If B<add> is not B<NULL>, the prime will fulfill the condition p % B<add>
== B<rem> (p % B<add> == 1 if B<rem> == B<NULL>) in order to suit a given
generator.
If B<safe> is true, it will be a safe prime (i.e. a prime p so
that (p1)/2 is also prime). If B<safe> is true, and B<rem> == B<NULL>
the condition will be p % B<add> == 3.
It is recommended that B<add> is a multiple of 4.
The random generator must be seeded prior to calling BN_generate_prime_ex().
If the automatic seeding or reseeding of the OpenSSL CSPRNG fails due to
external circumstances (see L<RAND(7)>), the operation will fail.
BN_is_prime_ex() and BN_is_prime_fasttest_ex() test if the number B<p> is
prime. The following tests are performed until one of them shows that
B<p> is composite; if B<p> passes all these tests, it is considered
prime.
BN_is_prime_fasttest_ex(), when called with B<do_trial_division == 1>,
first attempts trial division by a number of small primes;
if no divisors are found by this test and B<cb> is not B<NULL>,
B<BN_GENCB_call(cb, 1, 1)> is called.
If B<do_trial_division == 0>, this test is skipped.
Both BN_is_prime_ex() and BN_is_prime_fasttest_ex() perform a MillerRabin
probabilistic primality test with B<nchecks> iterations. If
B<nchecks == BN_prime_checks>, a number of iterations is used that
yields a false positive rate of at most 2^64 for random input.
The error rate depends on the size of the prime and goes down for bigger primes.
The rate is 2^80 starting at 308 bits, 2^112 at 852 bits, 2^128 at 1080 bits,
2^192 at 3747 bits and 2^256 at 6394 bits.
When the source of the prime is not random or not trusted, the number
of checks needs to be much higher to reach the same level of assurance:
It should equal half of the targeted security level in bits (rounded up to the
next integer if necessary).
For instance, to reach the 128 bit security level, B<nchecks> should be set to
64.
If B<cb> is not B<NULL>, B<BN_GENCB_call(cb, 1, j)> is called
after the jth iteration (j = 0, 1, ...). B<ctx> is a
preallocated B<BN_CTX> (to save the overhead of allocating and
freeing the structure in a loop), or B<NULL>.
BN_GENCB_call() calls the callback function held in the B<BN_GENCB> structure
and passes the ints B<a> and B<b> as arguments. There are two types of
B<BN_GENCB> structure that are supported: "new" style and "old" style. New
programs should prefer the "new" style, whilst the "old" style is provided
for backwards compatibility purposes.
A B<BN_GENCB> structure should be created through a call to BN_GENCB_new(),
and freed through a call to BN_GENCB_free().
For "new" style callbacks a BN_GENCB structure should be initialised with a
call to BN_GENCB_set(), where B<gencb> is a B<BN_GENCB *>, B<callback> is of
type B<int (*callback)(int, int, BN_GENCB *)> and B<cb_arg> is a B<void *>.
"Old" style callbacks are the same except they are initialised with a call
to BN_GENCB_set_old() and B<callback> is of type
B<void (*callback)(int, int, void *)>.
A callback is invoked through a call to B<BN_GENCB_call>. This will check
the type of the callback and will invoke B<callback(a, b, gencb)> for new
style callbacks or B<callback(a, b, cb_arg)> for old style.
It is possible to obtain the argument associated with a BN_GENCB structure
(set via a call to BN_GENCB_set or BN_GENCB_set_old) using BN_GENCB_get_arg.
BN_generate_prime() (deprecated) works in the same way as
BN_generate_prime_ex() but expects an oldstyle callback function
directly in the B<callback> parameter, and an argument to pass to it in
the B<cb_arg>. BN_is_prime() and BN_is_prime_fasttest()
can similarly be compared to BN_is_prime_ex() and
BN_is_prime_fasttest_ex(), respectively.
=head1 RETURN VALUES
BN_generate_prime_ex() return 1 on success or 0 on error.
BN_is_prime_ex(), BN_is_prime_fasttest_ex(), BN_is_prime() and
BN_is_prime_fasttest() return 0 if the number is composite, 1 if it is
prime with an error probability of less than 0.25^B<nchecks>, and
1 on error.
BN_generate_prime() returns the prime number on success, B<NULL> otherwise.
BN_GENCB_new returns a pointer to a BN_GENCB structure on success, or B<NULL>
otherwise.
BN_GENCB_get_arg returns the argument previously associated with a BN_GENCB
structure.
Callback functions should return 1 on success or 0 on error.
The error codes can be obtained by L<ERR_get_error(3)>.
=head1 REMOVED FUNCTIONALITY
As of OpenSSL 1.1.0 it is no longer possible to create a BN_GENCB structure
directly, as in:
BN_GENCB callback;
Instead applications should create a BN_GENCB structure using BN_GENCB_new:
BN_GENCB *callback;
callback = BN_GENCB_new();
if (!callback)
/* error */
...
BN_GENCB_free(callback);
=head1 SEE ALSO
L<DH_generate_parameters(3)>, L<DSA_generate_parameters(3)>,
L<RSA_generate_key(3)>, L<ERR_get_error(3)>, L<RAND_bytes(3)>,
L<RAND(7)>
=head1 HISTORY
The BN_GENCB_new(), BN_GENCB_free(),
and BN_GENCB_get_arg() functions were added in OpenSSL 1.1.0.
=head1 COPYRIGHT
Copyright 20002020 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the OpenSSL license (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file LICENSE in the source distribution or at
L<https://www.openssl.org/source/license.html>.
=cut
