Skip to main content
Chemistry LibreTexts

13.6: Additional Resources

  • Page ID
    220779
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The following set of experiments introduce students to the applications of chemical kinetic methods, including enzyme kinetic methods, and flow injection analysis.

    Chemical Kinetic Methods

    • Abramovitch, D. A.; Cunningham, L. K.; Litwer, M. R. “Decomposition Kinetics of Hydrogen Peroxide: Novel Lab Experiments Employing Computer Technology,” J. Chem. Educ. 2003, 80, 790–792.

    • Antuch, M.; Ramos, Y.; Álvarez, R. “Simulated Analysis of Linear Reversible Enzyme Inhibition with SCILAB,” J. Chem. Educ. 2014, 91, 1203–1206.

    • Bateman, Jr. R. C.; Evans, J. A. “Using the Glucose Oxidase/Peroxidase Systems in Enzyme Kinetics,” J. Chem. Educ. 1995, 72, A240–A241.

    • Bendinskas, K.; DiJacomo, C.; Krill, A.; Vitz, E. “Kinetics of Alcohol Dehydrogenase-Catalyzed Oxidation of Ethanol Followed by Visible Spectroscopy,” J. Chem. Educ. 1068, 82, 1068–1070.

    • Clark, C. R. “A Stopped-Flow Kinetics Experiment for Advanced Undergraduate Laboratories: Formation of Iron(III) Thiocyanate,” J. Chem. Educ. 1997, 74, 1214–1217.

    • Diamandis, E. P.; Koupparis, M. A.; Hadjiionnou, T. P. “Kinetic Studies with Ion-Selective Electrodes: Determination of Creatinine in Urine with a Picrate Ion-Selective Electrode,” J. Chem. Educ. 1983, 60, 74–76.

    • Dias, A. A.; Pinto, P. A.; Fraga, I.; Bezerra, R. M. F. “Diagnosis of Enzyme Inhibition Using Excel Solver: A Combined Dry and Wet Laboratory Exercise,” J. Chem. Educ. 2014, 91, 1017–1021.

    • El Seoud, O. A.; Galgano, P. D.; Arêas, E. P. G.; Moraes, J. M. “Learning Chemistry from Good and (Why Not?) Problematic Results: Kinetics of the pH-Independent Hydrolysis of 4-Nitrophenyl Chloroformate,” J. Chem. Educ. 2015, 92, 752–756.

    • Frey, M. W.; Frey, S. T.; Soltau, S. R. “Exploring the pH Dependence of L-leucine-p-nitroanilide Cleavage by Aminopeptidase Aeromonas Proteolytica: A Combined Buffer-Enzyme Kinetics Experiment for the General Chemistry Laboratory,” Chem. Educator 2010, 15, 117–120.

    • Gooding, J. J.; Yang, W.; Situmorang, M. “Bioanalytical Experiments for the Undergraduate Laboratory: Monitoring Glucose in Sport Drinks,” J. Chem. Educ. 2001, 78, 788–790.

    • Hamilton, T. M.; Dobie-Galuska, A. A.; Wietstock, S. M. “The o-Phenylenediamine-Horseradish Peroxidase System: Enzyme Kinetics in the General Chemistry Lab,” J. Chem. Educ. 1999, 76, 642– 644.

    • Johnson, K. A. “Factors Affecting Reaction Kinetics of Glucose Oxidase,” J. Chem. Educ. 2002, 79, 74–76.

    • Mowry, S.; Ogren, P. J. “Kinetics of Methylene Blue Reduction by Ascorbic Acid,” J. Chem. Educ. 1999, 76, 970–974.

    • Nyasulu, F. W.; Barlag, R. “Gas Pressure Sensor Monitored Iodide-Catalyzed Decomposition Kinetics of Hydrogen Peroxide: An Initial Rate Approach,” Chem. Educator 2008, 13, 227–230.

    • Nyasulu, F. W.; Barlag, R. “Thermokinetics: Iodide-Catalyzed Decomposition Kinetics of Hydrogen Peroxide; An Integrated Rate Approach,” Chem. Educator 2010, 15, 168–170.

    • Pandey, S.; McHale, M. E. R.; Horton, A. M.; Padilla, S. A.; Trufant, A. L.; De La Sancha, N. U.; Vela, E.; Acree, Jr., W. E. “Kinetics-Based Indirect Spectrophotometric Method for the Simultaneous Determination of \(\text{MnO}_4^-\) and \(\text{Cr}_2 \text{O}_7^{2-}\) ,” J. Chem. Educ. 1998, 75, 450–452.

    • Stock, E.; Morgan, M. “A Spectroscopic Analysis of the Kinetics of the Iodine Clock Reaction without Starch,” Chem. Educator 2010, 15, 158–161.

    • Vasilarou, A.-M. G.; Georgiou, C. A. “Enzymatic Spectrophotometric Reaction Rate Determination of Glucose in Fruit Drinks and Carbonated Beverages,” J. Chem. Educ. 2000, 77, 1327–1329.

    • Williams, K. R.; Adhyaru, B.; Timofeev, J.; Blankenship, M. K. “Decomposition of Aspartame. A Kinetics Experiment for Upper-Level Chemistry Laboratories,” J. Chem. Educ. 2005, 82, 924–925.

    Flow Injection Methods

    • Carroll, M. K.; Tyson, J. F. “An Experiment Using Time-Based Detection in Flow Injection Analysis,” J. Chem. Educ. 1993, 70, A210–A216.

    • ConceiÇão, A. C. L.; Minas da Piedade, M. E. “Determination of Acidity Constants by Gradient Flow-Injection Titration,” J. Chem. Educ. 2006, 83, 1853–1856.

    • Hansen, E. H.; Ruzicka, J. “The Principles of Flow Injection Analysis as Demonstrated by Three Lab Exercises,” J. Chem. Educ. 1979, 56, 677–680.

    • McKelvie, I. D.; Cardwell, T. J.; Cattrall, R. W. “A Microconduit Flow Injection Analysis Demonstration using a 35-mm Slide Projector,” J. Chem. Educ. 1990, 67, 262–263.

    • Meyerhoff, M. E.; Kovach, P. M. “An Ion-Selective Electrode/Flow Injection Analysis Experiment: Determination of Potassium in Serum,” J. Chem. Educ. 1983, 60, 766–768.

    • Nóbrega, J. A.; Rocha, F. R. P. “Ionic Strength Effect on the Rate of Reduction of Hexacyanoferrate(II) by Ascorbic Acid,” J. Chem. Educ. 1997, 74, 560–562.

    • Ríos, A.; Luque de Castro, M.; Valcárcel, M. “Determination of Reaction Stoichiometries by Flow Injection Analysis,” J. Chem. Educ. 1986, 63, 552–553.

    • Stults, C. L. M.; Wade, A. P.; Crouch, S. R. “Investigation of Temperature Effects on Dispersion in a Flow Injection Analyzer,” J. Chem. Educ. 1988, 65, 645–647.

    • Wolfe, C. A. C.; Oates, M. R.; Hage, D. S. “Automated Protein Assay Using Flow Injection Analysis,” J. Chem. Educ. 1998, 75, 1025–1028.

    The following sources provides a general review of the importance of chemical kinetics in analytical chemistry.

    • Bergmyer, H. U.; Grassl, M. Methods of Enzymatic Analysis, Verlag Chemie: Deerfield Beach, FL, 3rd Ed., 1983.

    • Doménech-Carbó, A. “Dating: An Analytical Task,” ChemTexts 2015, 1:5.

    • Laitinen, H. A.; Ewing, G. W., eds., A History of Analytical Chemistry, The Division of Analytical Chemistry of the American Chemical Society: Washington, D. C., 1977, pp. 97–102.

    • Malmstadt, H. V.; Delaney, C. J.; Cordos, E. A. “Reaction-Rate Methods of Chemical Analysis,” Crit. Rev. Anal. Chem. 1972, 2, 559–619.

    • Mark, H. B.; Rechnitz, G. A. Kinetics in Analytical Chemistry, Wiley: New York, 1968.

    • Mottola, H. A. “Catalytic and Differential Reaction-Rate Methods of Chemical Analysis,” Crit. Rev. Anal. Chem. 1974, 4, 229–280.

    • Mottola, H. A. “Some Kinetic Aspects Relevant to Contemporary Analytical Chemistry,” J. Chem. Educ. 1981, 58, 399–403.

    • Mottola, H. A. Kinetic Aspects of Analytical Chemistry, Wiley: New York, 1988.

    • Pardue, H. L. “A Comprehensive Classification of Kinetic Methods of Analysis Used in Clinical Chemistry,” Clin. Chem. 1977, 23, 2189–2201.

    • Pardue, H. L. “Kinetic Aspects of Analytical Chemistry,” Anal. Chim. Acta, 1989, 216, 69–107.

    • Perez-Bendito, D.; Silva, M. Kinetic Methods in Analytical Chemistry, Ellis Horwood: Chichester, 1988.

    • Pisakiewicz, D. Kinetics of Chemical and Enzyme-Catalyzed Reactions, Oxford University Press: New York, 1977.

    The following instrumental analysis textbooks may be consulted for further information on the detectors and signal analyzers used in radiochemical methods of analysis.

    • Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis, 5th Ed., Saunders College Publishing/Harcourt Brace and Co.: Philadelphia., 1998, Chapter 32.

    • Strobel, H. A.; Heineman, W. R. Chemical Instrumentation: A Systematic Approach, 3rd Ed., Wiley-Interscience: New York, 1989.

    The following resources provide additional information on the theory and application of flow injection analysis.

    • Andrew, K. N.; Blundell, N. J.; Price, D.; Worsfold, P. J. “Flow Injection Techniques for Water Monitoring,” Anal. Chem. 1994, 66, 916A–922A.

    • Betteridge, D. “Flow Injection Analysis,” Anal. Chem. 1978, 50, 832A–846A.

    • Kowalski, B. R.; Ruzicka, J. Christian, G. D. “Flow Chemography - The Future of Chemical Education,” Trends Anal. Chem. 1990, 9, 8–13.

    • Mottola, H. A. “Continuous Flow Analysis Revisited,” Anal. Chem. 1981, 53, 1312A–1316A.

    • Ruzicka, J. “Flow Injection Analysis: From Test Tube to Integrated Microconduits,” Anal. Chem. 1983, 55, 1040A–1053A.

    • Ruzicka, J.; Hansen, E. H. Flow-Injection Analysis, Wiley-Interscience: New York, 1989.

    • Ruzicka, J.; Hansen, E. H. “Retro-Review of Flow-Injection Analysis,” Trends Anal. Chem. 2008, 27, 390–393.

    • Silvestre, C. I. C.; Santos, J. L. M.; Lima, J. L. F. C.; Zagatto, E. A. G. “Liquid-Liquid Extraction in Flow Analysis: A Critical Review,” Anal. Chim. Acta 2009, 652, 54–65.

    • Stewart, K. K. “Flow Injection Analysis: New Tools for Old Assays, New Approaches to Analytical Measurements,” Anal. Chem. 1983, 55, 931A–940A.

    • Tyson, J. F. “Atomic Spectrometry and Flow Injection Analysis: A Synergic Combination,” Anal. Chim. Acta, 1988, 214, 57–75.

    • Valcarcel, M.; Luque de Castro, M. D. Flow-Injection Analysis: Principles and Applications, Ellis Horwood: Chichester, England, 1987.

     


    This page titled 13.6: Additional Resources is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.

    • Was this article helpful?