Skip to main content
Chemistry LibreTexts

6.11: Some Final Thoughts on Equilibrium Calculations

  • Page ID
    220708
  • In this chapter we developed several tools to evaluate the composition of a system at equilibrium. These tools differ in how precisely they allow us to answer questions involving equilibrium chemistry. They also differ in how easy they are to use. An important part of having several tools to choose from is knowing when to each is most useful. If you need to know whether a reaction if favorable or you need to estimate a solution’s pH, then a ladder diagram usually will meet your needs. On the other hand, if you require a more accurate or more precise estimate of a compound’s solubility, then a rigorous calculation that includes activity coefficients is necessary.

    A critical part of solving an equilibrium problem is to know what equilibrium reactions to include. The need to include all relevant reactions is obvious, and at first glance this does not appear to be a significant problem—it is, however, a potential source of significant errors. The tables of equilibrium constants in this textbook, although extensive, are a small subset of all known equilibrium constants, which makes it easy to overlook an important equilibrium reaction. Commercial and freeware computational programs with extensive databases are available for equilibrium modeling, two examples of which are Visual Minteq (Windows only) and CurTiPot (for Excel); Visual Minteq can model acid–base, solubility, complexation, and redox equilibria; CurTiPot is limited to acid–base equilibria. Both programs account for the effect of activity. The R package CHNOSZ is used to model aqueous geochemistry systems and the properities of proteins.

    An integrated set of tools for thermodynamic calculations in aqueous geochemistry and geobiochemistry. Functions are provided for writing balanced reactions to form species from user-selected basis species and for calculating the standard molal properties of species and reactions, including the standard Gibbs energy and equilibrium constant. Calculations of the non-equilibrium chemical affinity and equilibrium chemical activity of species can be portrayed on diagrams as a function of temperature, pressure, or activity of basis species; in two dimensions, this gives a maximum affinity or predominance diagram. The diagrams have formatted chemical formulas and axis labels, and water stability limits can be added to Eh-pH, oxygen fugacity- temperature, and other diagrams with a redox variable. The package has been developed to handle common calculations in aqueous geochemistry, such as solubility due to complexation of metal ions, mineral buffers of redox or pH, and changing the basis species across a diagram ("mosaic diagrams"). CHNOSZ also has unique capabilities for comparing the compositional and thermodynamic properties of different proteins.

     

    Finally, a consideration of equilibrium chemistry can only help us decide if a reaction is favorable; however, it does not guarantee that the reaction occurs. How fast a reaction approaches its equilibrium position does not depend on the reaction’s equilibrium constant because the rate of a chemical reaction is a kinetic, not a thermodynamic, phenomenon. We will consider kinetic effects and their application in analytical chemistry in Chapter 13.

    • Was this article helpful?