Skip to main content
Chemistry LibreTexts

1.14.63: Solubilities of Solids in Liquids

  • Page ID
    390950
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    This very large subject can be divided into two groups. The first group concerns the solubility of a given solid substance \(j\) in a given solvent, liquid \(\ell_{1}\). The second group involves comparison of the solubilities of a given solid in two liquids, \(\ell_{1}\) and \(\ell_{2}\).

    A closed system (at defined \(\mathrm{T}\) and \(\mathrm{p}\), the latter being close to the standard pressure) contains solid substance \(j\) in equilibrium with an aqueous solution containing solute \(j\). The system is characterized by the (equilibrium) solubility, \(\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq})\). At equilibrium,

    \[\mu_{\mathrm{j}}^{*}(\mathrm{~s})=\mu_{\mathrm{j}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) \, \gamma_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) / \mathrm{m}^{0}\right]\]

    Then

    \[\Delta \mu_{\mathrm{j}}^{0}=\mu_{\mathrm{j}}^{0}(\mathrm{aq})-\mu_{\mathrm{j}}^{*}(\mathrm{~s})=-\mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) \, \gamma_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) / \mathrm{m}^{0}\right]\]

    If the aqueous solution is dilute and the solubility is low, it can often be assumed that the properties of the solution are ideal. Hence,

    \[\Delta \mu_{\mathrm{j}}^{0}=\mu_{\mathrm{j}}^{0}(\mathrm{aq})-\mu_{\mathrm{j}}^{\mathrm{*}}(\mathrm{s})=-\mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) / \mathrm{m}^{0}\right]\]

    It should be noted that the sign of \(\Delta \mu_{j}^{0}\) depends on whether or not \(m_{j}^{e q}(a q)\) is larger or less than unity.

    We illustrate the second approach by considering a combination of the experiment described above and an experiment where the solvent is a binary aqueous mixture, mole fraction composition \(\mathrm{x}_{2}\). At equilibrium,

    \[\mu_{j}^{*}(s)=\mu_{j}^{0}\left(s \ln ; x_{2}\right)+R \, T \, \ln \left[m_{j}^{\mathrm{eq}}\left(s \ln ; x_{2}\right) \, \gamma_{j}^{\mathrm{eq}}\left(s \ln ; x_{2}\right) / m^{0}\right]\]

    \[\begin{aligned}
    \Delta\left(\mathrm{aq} \rightarrow \mathrm{x}_{2}\right) \mu_{\mathrm{j}}^{0}=\mu_{\mathrm{j}}^{0}\left(\mathrm{~s} \ln ; \mathrm{x}_{2}\right)-\mu_{\mathrm{j}}^{0}(\mathrm{aq}) \\
    =-\mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}\left(\mathrm{s} \ln ; \mathrm{x}_{2}\right) \, \gamma_{\mathrm{j}}^{\mathrm{eq}}\left(\mathrm{s} \ln ; \mathrm{x}_{2}\right) / \mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) \, \gamma_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq})\right]
    \end{aligned}\]

    If both solutions are dilute in substance \(j\), the ratio, \(\gamma_{j}^{\mathrm{eq}}\left(\mathrm{s} \ln ; \mathrm{x}_{2}\right) / \gamma_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq})\) can be assumed to be close to unity. In fact this is a better approximation than assuming both activity coefficients are unity. Then

    \[\Delta\left(\mathrm{aq} \rightarrow \mathrm{x}_{2}\right) \mu_{\mathrm{j}}^{0}=-\mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}\left(\mathrm{s} \ln ; \mathrm{x}_{2}\right) / \mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq})\right]\]

    In other words if the solubility of substance \(j\) increases on adding solvent component 2 then \(\Delta\left(\mathrm{aq} \rightarrow \mathrm{x}_{2}\right) \mu_{\mathrm{j}}^{\mathrm{c}}\) is negative. This stabilization is a consequence of a difference in solute-solvent interactions.


    This page titled 1.14.63: Solubilities of Solids in Liquids is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?