1.14.63: Solubilities of Solids in Liquids
- Page ID
- 390950
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)This very large subject can be divided into two groups. The first group concerns the solubility of a given solid substance \(j\) in a given solvent, liquid \(\ell_{1}\). The second group involves comparison of the solubilities of a given solid in two liquids, \(\ell_{1}\) and \(\ell_{2}\).
A closed system (at defined \(\mathrm{T}\) and \(\mathrm{p}\), the latter being close to the standard pressure) contains solid substance \(j\) in equilibrium with an aqueous solution containing solute \(j\). The system is characterized by the (equilibrium) solubility, \(\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq})\). At equilibrium,
\[\mu_{\mathrm{j}}^{*}(\mathrm{~s})=\mu_{\mathrm{j}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) \, \gamma_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) / \mathrm{m}^{0}\right] \nonumber \]
Then
\[\Delta \mu_{\mathrm{j}}^{0}=\mu_{\mathrm{j}}^{0}(\mathrm{aq})-\mu_{\mathrm{j}}^{*}(\mathrm{~s})=-\mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) \, \gamma_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) / \mathrm{m}^{0}\right] \nonumber \]
If the aqueous solution is dilute and the solubility is low, it can often be assumed that the properties of the solution are ideal. Hence,
\[\Delta \mu_{\mathrm{j}}^{0}=\mu_{\mathrm{j}}^{0}(\mathrm{aq})-\mu_{\mathrm{j}}^{\mathrm{*}}(\mathrm{s})=-\mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) / \mathrm{m}^{0}\right] \nonumber \]
It should be noted that the sign of \(\Delta \mu_{j}^{0}\) depends on whether or not \(m_{j}^{e q}(a q)\) is larger or less than unity.
We illustrate the second approach by considering a combination of the experiment described above and an experiment where the solvent is a binary aqueous mixture, mole fraction composition \(\mathrm{x}_{2}\). At equilibrium,
\[\mu_{j}^{*}(s)=\mu_{j}^{0}\left(s \ln ; x_{2}\right)+R \, T \, \ln \left[m_{j}^{\mathrm{eq}}\left(s \ln ; x_{2}\right) \, \gamma_{j}^{\mathrm{eq}}\left(s \ln ; x_{2}\right) / m^{0}\right] \nonumber \]
\[\begin{aligned}
\Delta\left(\mathrm{aq} \rightarrow \mathrm{x}_{2}\right) \mu_{\mathrm{j}}^{0}=\mu_{\mathrm{j}}^{0}\left(\mathrm{~s} \ln ; \mathrm{x}_{2}\right)-\mu_{\mathrm{j}}^{0}(\mathrm{aq}) \\
=-\mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}\left(\mathrm{s} \ln ; \mathrm{x}_{2}\right) \, \gamma_{\mathrm{j}}^{\mathrm{eq}}\left(\mathrm{s} \ln ; \mathrm{x}_{2}\right) / \mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq}) \, \gamma_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq})\right]
\end{aligned} \nonumber \]
If both solutions are dilute in substance \(j\), the ratio, \(\gamma_{j}^{\mathrm{eq}}\left(\mathrm{s} \ln ; \mathrm{x}_{2}\right) / \gamma_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq})\) can be assumed to be close to unity. In fact this is a better approximation than assuming both activity coefficients are unity. Then
\[\Delta\left(\mathrm{aq} \rightarrow \mathrm{x}_{2}\right) \mu_{\mathrm{j}}^{0}=-\mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}\left(\mathrm{s} \ln ; \mathrm{x}_{2}\right) / \mathrm{m}_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq})\right] \nonumber \]
In other words if the solubility of substance \(j\) increases on adding solvent component 2 then \(\Delta\left(\mathrm{aq} \rightarrow \mathrm{x}_{2}\right) \mu_{\mathrm{j}}^{\mathrm{c}}\) is negative. This stabilization is a consequence of a difference in solute-solvent interactions.


