Skip to main content
Chemistry LibreTexts

1.14.61: Solubility Products

  • Page ID
    390924
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    A given closed system at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\) (which is close to ambient) contains an aqueous solution of a sparingly soluble salt \(\mathrm{MX}\); e.g. \(\mathrm{AgCl}\). The system also contains solid salt \(\mathrm{MX}\). When a soluble salt (e.g. \(\mathrm{KNO}_{3}\)) is added the solubility of salt \(\mathrm{MX}\) increases. This remarkable observation is readily accounted for. The equilibrium involving the sparingly soluble salt is represented as follows.

    \(\mathrm{MX}(\mathrm{s})\) \(\Leftrightarrow\) \(\mathrm{M}^{+}\mathrm{~X}^{-}(\mathrm{aq})\)
    solid   solution

    We represent the salt \(\mathrm{MX}\) by the symbol \(j\). At equilibrium,

    \[\mu_{\mathrm{j}}^{\prime \prime}(\mathrm{s})=\mu_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq})\]

    In terms of the solubility \(\mathrm{S}_{j}\) of the salt \(\mathrm{MX}\), a 1:1 salt,

    \[\mu_{\mathrm{j}}^{*}(\mathrm{~s})=\mu_{\mathrm{j}}^{0}(\mathrm{aq})+2 \, \mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{S}_{\mathrm{j}} \, \gamma_{\pm} / \mathrm{m}^{\mathrm{o}}\right)\]

    By definition

    \[\Delta_{\text {sol }} G^{0}=-R \, T \, \ln K_{s}=\mu_{j}^{0}(a q)-\mu_{j}^{*}(s)\]

    \(\mathrm{K}_{\mathrm{S}}\) is the solubility product, a characteristic property of salt \(\mathrm{MX}\) (at defined \(\mathrm{T}\) and \(\mathrm{p}\)).

    \[\mathrm{K}_{\mathrm{S}}=\left[\mathrm{S}_{\mathrm{j}} \, \gamma_{\pm} / \mathrm{m}^{0}\right]^{2}\]

    Or,

    \[\ln \left(\mathrm{S}_{\mathrm{j}} / \mathrm{m}^{0}\right)=(1 / 2) \, \ln \left(\mathrm{K}_{\mathrm{s}}\right)-\ln \left(\gamma_{\pm}\right)\]

    According to the DHLL,

    \[\ln \left(\gamma_{\pm}\right)=-S_{\gamma} \,\left(\mathrm{I} / \mathrm{m}^{0}\right)^{1 / 2}\]

    \(\mathrm{I}\) is the ionic strength of the solution which can be changed by adding a soluble salt. From equations (e) and (f),

    \[\ln \left(\mathrm{S}_{\mathrm{j}} / \mathrm{m}^{0}\right)=(1 / 2) \, \ln \left(\mathrm{K}_{\mathrm{s}}\right)+\mathrm{S}_{\gamma} \,\left(\mathrm{I} / \mathrm{m}^{0}\right)^{1 / 2}\]

    The key point to note is the positive sign in equation (g) showing that the theory accounts for the observed salting–in of the sparingly soluble salt. Further a plot of \(\ln \left(S_{j} / m^{0}\right)\) against \(\left(\mathrm{I} / \mathrm{m}^{0}\right)^{1 / 2}\) is linear yielding an estimate for \(\mathrm{K}_{\mathrm{S}}\) from the intercept.


    This page titled 1.14.61: Solubility Products is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?